Phase Composition and Electronic Structure of Aluminium Nitride AlN

V. M. Uvarov,  Yu. V. Kudryavtsev , E. M. Rudenko, M. V. Uvarov, S. A. Bespalov

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 27.09.2024; final version - 14.11.2024. Download: PDF

Within the framework of the density functional theory, the information on the energy band structures, charge characteristics of the atoms and interstitial space, the cohesive energies of the aluminium nitride AlN in the structures of wurtzite (WZ), zinc blende (ZB) and the NaCl-type phase (RS) has been obtained. It has been established that the changing of the spatial structure of aluminium nitride AlN in the sequence of phases WZ → ZB → RS leads to an increase in the charges on aluminium and nitrogen atoms and their decrease in the interatomic regions. The highest value of the interatomic charge in this series is in the WZ phase, indicating the partially covalent nature of the chemical bonds of the atoms within it. This covalence leads to the highest cohesion energy Ecoh value of the formula unit of the WZ phase (Ecoh = −14.656 eV). For the nearest energy state of AlN in the ZB phase, the instability threshold is insignificant and amounts to only Ecoh = 0.044 eV, while the threshold for the transition to the RS phase turned out to be significantly higher and amounted to Ecoh = 0.363 eV.

Key words: band structure calculations, electronic structure, aluminium nitride, solid solutions, alloys.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i02/0125.html

DOI: https://doi.org/10.15407/mfint.47.02.0125

PACS: 61.50.Lt, 71.15.Ap, 71.15.Mb, 71.15.Nc, 71.20.Nr, 71.27.+a

Citation: V. M. Uvarov,  Yu. V. Kudryavtsev , E. M. Rudenko, M. V. Uvarov, and S. A. Bespalov, Phase Composition and Electronic Structure of Aluminium Nitride AlN, Metallofiz. Noveishie Tekhnol., 47, No. 2: 125-134 (2025)


REFERENCES
  1. A. W. Weimer, G. A. Cochran, G. A. Eisman, J. P. Henley, B. D. Hook, L. K. Mills, T. A. Guiton, A. K. Knudsen, N. R. Nicholas, J. E. Volmering, and W. G. Moore, J. Am. Ceram. Soc., 77: 3 (1994).
  2. A. V. Virkar, T. B. Jackson, and R. A. Cutler, J. Am. Ceram. Soc., 72: 2031 (1989).
  3. T. J. Mroz, Jr., Am. Ceram. Bull., 71: 782 (1992).
  4. P. T. B. Shaffer and T. J. Mroz, Jr., Aluminium Nitride (Advanced Refractory Technology, Inc., 1991).
  5. A. Glen, R. A. Slack, R. Tanzilli, O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids, 48: 141 (1987).
  6. O. Ye. Pogorelov, O. V. Filatov, E. M. Rudenko, I. V. Korotash, and M. V. Dyakin, Prog. Phys. Met., 24: 239 (2023).
  7. E. M. Rudenko, A. O. Krakovnyy, M. V. Dyakin, I. V. Korotash, D. Yu. Polots’kyy, and M. A. Skoryk, Metallofiz. Noveishie Tekhnol., 44, No. 8: 989 (2022) (in Ukrainian).
  8. A. Siegel, K. Parlinski, and U. D. Wdowik, Phys. Rev. B, 74: 104116 (2006).
  9. G. R. Kline and K. M. Lakin, Appl. Phys. Lett., 43: 750 (1983).
  10. H. Vollstadt, E. Ito, M. Akaishi, S. Akimoto, and O. Fukunaga, Proc. Japan Acad., 66, Ser. B: 7 (1990).
  11. I. Petrov, E. Mojab, R. C. Powell, J. E. Greene, L. Hultman, and J.-E. Sundgren, Appl. Phys. Lett., 60: 2491 (1992).
  12. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, 10: 1237 (1992).
  13. E. Ruiz, S. Alvarez, and Pere Alemany, Phys. Rev. B, 49: 7115 (1994).
  14. F. Sizov, Z. Tsybrii, I. Korotash, and E. Rudenko, IR Blocking and Transparent in Visible and THz Filters (LAP LAMBERT Academic Publishing; Published on: 2018-08-10. 88 p. ISBN-13: 978-613-9-89803-9).
  15. E. Rudenko, Z. Tsybrii, F. Sizov, I. Korotash, D. Polotskiy, M. Skoryk, M. Vuichyk, and K. Svezhentsova, J. Appl. Phys., 121: 135304 (2017).
  16. Z. Tsybrii, F. Sizov, M. Vuichyk, I. Korotash, and E. Rudenko, Infrared Phys. Technol., 107: 103323 (2020).
  17. Q. Xia, H. Xia, and A. L. Ruoff, J. Appl. Phys., 73: 8193 (1993).
  18. M. Durandurdu, J. Alloys and Compd., 480: 917 (2009).
  19. L. Hultman, S. Benhenda, G. Radnoczi, J.-E. Sundgren, J. E. Greene, and I. Petrov, Thin Solid Films, 215: 152 (1992).
  20. M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B, 45: 10123 (1992).
  21. S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomura, and K. Takemura, J. Phys. Chem. Solids, 58: 2093 (1997).
  22. E. Gabe, Y. LePage, and S. L. Mair, Phys. Rev. B, 24: 5634 (1981).
  23. C. Carlone, K. M. Lakin, and H. R. Shanks, J. Appl. Phys., 55: 4010 (1984).
  24. A. T. Collins, E. C. Lightowlers, and P. J. Dean, Phys. Rev., 158: 833 (1967).
  25. V. A. Fomichev, Sov. Phys. Solid State, 10: 597 (1968).
  26. R. V. Kasowski and F. S. Ohuchi, Phys. Rev. B, 35: 9311 (1987).
  27. M. Gautier, J. P. Duraud, and C. Le Gressus, Surf. Sci., 178: 201 (1986).
  28. K. Tsubouchi, K. Sugai, and N. Mikoshiba, 1981 Ultrasonics Symposia Proceedings (Ed. B. R. McAvoy) (New York: IEEE: 1981), p. 375.
  29. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, J. Appl. Phys., 44: 292 (1973).
  30. B. Hejda, Phys. Status Solidi, 32: 407 (1969).
  31. S. Bloom, J. Phys. Chern. Solids, 32: 2027 (1971).
  32. D. Jones and A. H. Lettington, Solid State Commun., 11: 701 (1972).
  33. W. Y. Ching and B. N. Harmon, Phys. Rev. B, 34: 5305 (1986).
  34. A. Kobayashi, O. Sankey, S. M. Yolz, and J. D. Dow, Phys. Rev. B, 28: 935 (1983).
  35. N. E. Christensen and I. Gorczyca, Phys. Rev. B, 47: 4307 (1993).
  36. J. Serrano, A. Rubio, E. Hernandez, A. Munoz, and A. Mujica, Phys. Rev. B, 62: 16612 (2000).
  37. W. M. Vim and R. J. Paff, J. Appl. Phys., 45: 1456 (1974).
  38. D. Singh, Plane Waves, Psedopotentials and LAPW Method (Boston: Kluwer Academic: 1994).
  39. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996).
  40. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, An Augmented Plane Wave + Local orbitals Program for Calculating Crystal Properties (Wien: Karlheinz Schwarz Techn. Universiteit: 2001).
  41. http://www.wien2k.at/reguser/faq/
  42. J. N. Murrell, J. M. Tedder, and S. F. A. Kettle, Teoriya Valentnosti [Valence Theory] (Moskva: Mir: 1968) (Russian translation).