Loading [MathJax]/jax/output/HTML-CSS/jax.js

Influence of the Location of the Au Layer on the Formationof the Ordered L10 Phase in FePt–Au Films

T. I. Verbytska1, I. E. Kotenko2, M. Yu. Natalenko1, K. O. Graivoronska3, D. S. Leonov4, M. Yu. Barabash1,4, Iu. M. Makogon1

1National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37, Beresteiskyi Ave., UA-03056 Kyiv, Ukraine
2L. V. Pysarzhevs’kyy Institute of Physical Chemistry, N.A.S. of Ukraine, 31 Nauky Prosp., UA-03028 Kyiv, Ukraine
3I. M. Frantsevych Institute for Problems in Materials Science, N.A.S. of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine
4Technical Centre, N.A.S. of Ukraine, 13 Pokrovs’ka Str., UA-04070 Kyiv, Ukraine

Received: 28.01.2025; final version - 30.01.2025. Download: PDF

The ordering processes during vacuum annealing in the FePt–Au films on the SiO2(100 nm)/Si(001) substrates and separated from them during in situ annealing are studied. Location of an additional (bottom, intermediate, top) Au layer affects on the residual stresses, structure, the disorder–order transition, and magnetic properties of FePt–Au films on substrate. During annealing, diffusion of Au and redistribution of it along the grain boundaries of the L10-FePt phase occurs. An increase of the Au concentration in the grain boundaries reduces the exchange interaction between them and increases the coercivity of the FePt/Au and Au/FePt films. Both films (on the substrate and separated from it) with an intermediate Au layer have the lowest temperature of the start of L10-phase formation. As shown, by changing the location of additional Au layer, one can control the initial-stress state and grain-structure parameters in the FePt layer and influence the A1 → L10 phase transformation during annealing in vacuum, structure, and magnetic properties.

Key words: thin films, annealing, ordering, L10-FePt, stress, hard-magneticmaterial, coercivity.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i02/0149.html

DOI: https://doi.org/10.15407/mfint.47.02.0149

PACS: 68.35.Ct, 68.35.Gy, 68.37.Ps, 68.37.Lp, 75.50.Vv, 75.60.Ej, 75.70.Ak

Citation: T. I. Verbytska, I. E. Kotenko, M. Yu. Natalenko, K. O. Graivoronska, D. S. Leonov, M. Yu. Barabash, and Iu. M. Makogon, Influence of the Location of the Au Layer on the Formationof the Ordered L10 Phase in FePt–Au Films, Metallofiz. Noveishie Tekhnol., 47, No. 2: 149—165 (2025)


REFERENCES
  1. I. Suzuki, S. Kubo, H. Sepehri-Amin, and Y. K. Takahashi, ACS Appl. Mater. Interfaces., 13: 16620 (2021).
  2. I. A. Vladymyrskyi, Y. Mamchur, O. V. Dubikovskyi, S. M. Voloshko, A. Ullrich, and M. Albrecht, Thin Solid Films, 754: 139300 (2022).
  3. A. T. McCallum, P. Krone, F. Springer, C. Brombacher, M. Albrecht, E. Dobisz, M. Grobis, D. Weller, and O. Hellwig, Appl. Phys. Lett., 98: 242503 (2011).
  4. D. Weller, O. Mosendz, G. Parker, S. Pisana, and T. S. Santos, phys. status solidi, 210: 1245 (2013) .
  5. I. Suzuki, J. Wang, Y. K. Takahashi, and K. Hono, J. Magn. Magn. Mater., 500: 166418 (2020).
  6. D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, J. Vac. Sci. Technol. B, 34: 060801 (2016).
  7. Y. K. Takahashi and K. Hono, Scr. Mater., 53: 403 (2005).
  8. M. L. Yan, N. Powers, and D. J. Sellmyer, J. Appl. Phys., 93: 8292 (2003).
  9. Y. F. Ding, J. S. Chen, and E. Liu, J. Cryst. Growth, 276: 111 (2005).
  10. S. N. Hsiao, S. H. Liu, S. K. Chen, T. S. Chin, and H. Y. Lee, Appl. Phys. Lett., 100: 261909 (2012).
  11. F. T. Yuan, S. H. Liu, W. M. Liao, S. N. Hsiao, S. K. Chen, and H. Y. Lee, IEEE Trans. Magn., 48: 1139 (2012).
  12. K. W. Wierman, C. L. Platt, J. K. Howard, and F. E. Spada, J. Appl. Phys., 93: 7160 (2003).
  13. C.-H. Lai, C.-H. Yang, C. C. Chiang, T. Balaji, and T. K. Tseng, Appl. Phys. Lett., 85: 4430 (2004).
  14. J.-S. Kim, Y.-M. Koo, B.-J. Lee, and S.-R. Lee, J. Appl. Phys., 99: 053906 (2006).
  15. J.-S. Kim, Y.-M. Koo, and N. Shin, J. Appl. Phys., 100: 093909 (2006).
  16. C. L. Zha, S. H. He, B. Ma, Z. Z. Zhang, F. X. Gan, and Q. Y. Jin, IEEE Trans. Magn., 44: 3539 (2008).
  17. X. Li, F. Wang, Y. Liu, L. Xu, J. Zhao, B. Liu, and X. Zhang, Appl. Phys. Lett., 94: 172512 (2009).
  18. S. N. Hsiao, S. K. Chen, T. S. Chin, Y. W. Hsu, H. W. Huang, F. T. Yuan, H. Y. Lee, and W. M. Liao, J. Magn. Magn. Mater., 321: 2459 (2009).
  19. S. N. Hsiao, F. T. Yuan, H. W. Chang, H. W. Huang, S. K. Chen, and H. Y. Lee, Appl. Phys. Lett., 94: 232505 (2009).
  20. S. N. Hsiao, S. K. Chen, S. H. Liu, C. J. Liao, F. T. Yuan, and H. Y. Lee, IEEE Trans. Magn., 47: 3637 (2011).
  21. P. V. Makushko, M. Y. Verbytska, M. N. Shamis, T. I. Verbytska, G. Beddies, N. Y. Safonova, M. Albrecht, and I. M. Makogon, Appl. Nanosci., 10: 2775 (2020).
  22. I. A. Vladymyrskyi, A. E. Gafarov, A. P. Burmak, S. I. Sidorenko, G. L. Katona, N. Y. Safonova, F. Ganss, G. Beddies, M. Albrecht, Y. N.Makogon, and D. L. Beke, J. Phys. D: Appl. Phys., 49: 035003 (2016).
  23. P. V. Makushko, M. Yu. Verbytska, M. N. Shamis, A. P. Burmak, Ya. A. Berezniak, K. A. Graivoronska, T. I. Verbytska, and Yu. N. Makogon, Powder Metall. Met. Ceram., 58, Nos. 3–4: 197 (2019).
  24. P. V. Makushko, M. N. Shamis, I. E. Kotenko, N. Y. Schmidt, T. I. Verbytska, and Iu. M. Makogon, Appl. Nanosci., 13: 5291 (2023).
  25. P. Makushko, M. Shamis, T. Verbytska, S. Sidorenko, and Iu. Makogon, Effect of Au Layers on A1 → L10 Phase Transition and Magnetic Properties of FePt Thin Films. NATO Science for Peace and Security Series B: Physics and Biophysics (Eds. A. Kaidatzis, S. Sidorenko, I. Vladymyrskyi, and D. Niarchos) (Springer: 2020), p. 95–117.
  26. P. V. Makushko, M. N. Shamis, N. Y. Sсhmidt, I. E. Kotenko, S. Gulyas, G. L. Katona, T. I. Verbytska, D. L. Beke, M. Albrecht, and Iu. M. Makogon, Appl. Nanosci., 10: 4809 (2020).
  27. C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy, and D. E. Laughlin, J. Appl. Phys., 92: 6104 (2002).
  28. C. Feng, B.-H. Li, Y. Liu, J. Teng, M.-H. Li, Y. Jiang, and G.-H. Yu, J. Appl. Phys., 103: 023916 (2008).
  29. O. P. Pavlova, T. I. Verbitska, I. A. Vladymyrskyi, S. I. Sidorenko, G. L. Katona, D. L. Beke, G. Beddies, M. Albrecht, and I. M. Makogon, Appl. Surf. Sci., 266: 100 (2013).
  30. I. A. Vladymyrskyi, M. V. Karpets, G. L. Katona, D. L. Beke, S. I. Sidorenko, T. Nagata, T. Nabatame, T. Chikyow, F. Ganss, G. Beddies, M. Albrecht, and I. M. Makogon, J. Appl. Phys., 116: 044310 (2014).
  31. R. Goyal, S. Lamba, and S. Annapoorni, Progress in Natural Science: Materials International, 29, Iss. 5: 517 (2019).
  32. B. Wang, K. Barmak, and T. J. Klemmer, IEEE Trans. Magn., 46, No. 6: 1773 (2010).
  33. M. Yu. Barabash, G. G. Vlaykov, A. A. Kolesnichenko, and L. V. Rybov, Method for Identification of Optical Resonances of Metal Films [Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering] (Eds. A. D. Pogrebnjak and V. Novosad) (Springer Nature Singapore Pte ltd.: 2019), p. 169–177.
  34. E. I. Nesis and Y. N. Skibin, J. Eng Phys Thermophys., 73: 859 (2000).
  35. V. M. Kosevich, A. N. Gladkikh, M. V. Karpovskyi, V. N. Klimenko, Interface Sci., 2: 247 (1995).
  36. O. P. Kryshtal’, S. I. Bogatyrenko, R. V. Sukhov, O. O. Minenkov, A. I. Taliashvili, Metallofiz. Noveishie Tekhnol., 36: 31 (2016).