Evaluation of Computer Model Results for Thermodynamic and Kinetic Calculation of Phase Transformation in a Middle-Carbon Alloyed Steel

V. V. Kaverynsky, Z. P. Sukhenko

I. M. Frantsevych Institute for Problems in Materials Science, N.A.S. of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine

Received: 24.04.2024; final version - 24.06.2024. Download: PDF

The phase composition of medium-carbon steel containing Cr, Mn, and Ni within the 1520°C-to-340°C temperature range is analysed using the CALPHAD method. Unlike the paraequilibrium approximation, this approach considers the redistribution of alloying elements between phases, crucial for modelling the kinetics of transformations. It allows for determining the decomposition of pearlitic transformation in a multicomponent system within this temperature interval. Verification of the developed computer model for the transformation of supercooled austenite is conducted by comparing it with reference data. The model constructs satisfactorily a thermokinetic diagram, but exhibits certain deviations. Nevertheless, the model predicts accurately cooling rates leading to martensite, ferrite, and bainite formation.

Key words: medium-carbon steel, kinetics of phase transformations, CCT diagram, mathematical model, CALPHAD.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i02/0183.html

DOI: https://doi.org/10.15407/mfint.47.02.0183

PACS: 07.05.Tp, 64.30.Ef, 64.60.Q-, 64.75.Ef, 65.40.Ba, 81.30.Bx, 82.60.Nh

Citation: V. V. Kaverynsky and Z. P. Sukhenko, Evaluation of Computer Model Results for Thermodynamic and Kinetic Calculation of Phase Transformation in a Middle-Carbon Alloyed Steel, Metallofiz. Noveishie Tekhnol., 47, No. 2: 183—197 (2025)


REFERENCES
  1. D. F. Sokolov, Razrabotka Modeley Raspada Austenita i Prognozirovaniya Mekhanicheskikh Svoystv Pri Kontroliruyemoy Prokatke Staley [Development of Models of Austenite Decomposition and Prediction of Mechanical Properties During Controlled Rolling of Steels] (Thesis of Disser. for Cand. Tech. Sci.) (St. Petersburg: Saint Petersburg State Institute of Technology: 2013) (in Russian).
  2. I. I. Novikov, Teoriya Termicheskoy Obrabotki Metallov [Theory of Heat Treatment of Metals] (Moskva: Metallurgy: 1978) (in Russian).
  3. N. Yu. Zolotorevskiy, E. V. Nesterova, and E. I. Khlusova, Voprosy Materialovedeniya, 67, No. 3: 38 (2011) (in Russian).
  4. V. V. Kaverynsky, A. I. Trotsan, and Z. P. Sukhenko, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1051 (2017) (in Russian).
  5. V. V. Kaverynsky, Matematychne Modelyuvannya i Komp’yuternyi Analiz Protsesiv Strukturoutvorennya Lehovanykh Stalei v Khodi Fazovykh Peretvoren [Mathematical Modeling and Computer Analysis of the Processes of Structure Formation of Alloy Steels During Phase Transformations] (Kyiv: KIM: 2019) (in Ukrainian).
  6. V. V. Kaverynsky, Komp’yuterna Prohrama dlya Modeliuvannia Fazovykh Peretvoren [A Computer Program for Phase Transformations Modeling]: Certificate of Copyright Registration No. 70573, Ukraine, Publ. 02.22.2017, Bul. 44.
  7. V. V. Kaverynsky and Z. P. Sukhenko, J. Mater. Sci. and Appl., 3, No 3: 47 (2017).
  8. V. V. Kaverynsky, Archives of Mechanical Technology and Materials, 38: 35 (2018).
  9. V. V. Kaverynsky, A. I. Trotsan, G. A. Bagliuk, and Z.P. Sukhenko, Metallurgical and Mining Industry, No. 5: 51 (2017) (in Russian).
  10. V. V. Kaverynsky, Int. J. Information Content and Processing, 6, No. 1: 49 (2019).
  11. V. V. Kaverinsky, D. G. Verbylo, and G. A. Bagliuk, AIST Transactions, Iron & Steel Technology, 19, No. 5: 232 (2022).
  12. A. A. Vasil’ev, D. F. Sokolov, N. G. Kolbasnikov, and S. F. Sokolov, Solid State Physics, 54, No. 8: 1565 (2012).
  13. J. M. Shapiro and J. S. Kirkaldy, Acta Met., 16, No. 5: 579–585 (1968).
  14. A. Vasilyev, Proc. MS&T (Detroit: 2007), p. 537.
  15. D. Gaude-Fugarolas and P. J. Jacques, ISIJ Int., 46, No. 5: 712–717 (2006).
  16. H. K. D. H. Bhadeshia, Bainite in Steels (London: The Institute of Materials: 1992).
  17. F. Huyan, P. Hedström, L. Höglund, and A. Borgenstam, Met. Mater. Trans. A, 47A, No. 9: 4404 (2016).
  18. L. E. Popova and A. A. Popov, Diagrammy Prevrashcheniya Austenita v Stalyakh i Beta-Rastvora v Splavakh Titana [Diagrams of Austenite Transformation in Steels and Beta-Solution in Titanium Alloys] (Moskva: Metallurgy: 1991) (in Russian).
  19. PyCALPHAD: Computational Thermodynamics [Online] (2015).
  20. B. Hallstedt, Proc. of 4th International Conference on Medium and High Manganese Steels—HMnS2019 (April 1–3, 2019, Aachen, Germany) (Eds. W. Bleck and D. Raabe), p. 201.