Loading [MathJax]/jax/output/HTML-CSS/jax.js

Investigation of Properties of Multilayer Nitride CrN/NbN Coatings According to Acoustic Emission Parameters. Pt. 1. Multilayer CrN/NbN Coatings with a Double-Layer Thickness of 230 nm

I. V. Serdyuk1, S. I. Petrushenko2,3, V. O. Stolbovyy1,4, M. Fialkowsky3

1National Science Centre ‘Kharkiv Institute of Physics and Technology’, N.A.S. of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine
2V. N. Karazin Kharkiv National University, 4 Svobody Sqr., UA-61022 Kharkiv, Ukraine
3Technical University of Liberec, Studentska 1402/2, 46117 Liberec 1, Czech Republic
4Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., UA-61002 Kharkiv, Ukraine

Received: 18.03.2024; final version - 08.07.2024. Download: PDF

The evaluation method for acoustic emission, which detects the elastic waves emitted during cracking and delamination of the vacuum-arc multilayer nitride CrN/NbN coatings, is used for investigation of the coating properties. The investigation is conducted using scratch testing and microscopic visual observation of scratches. To compare the properties of multilayer CrN/NbN coatings obtained at different technological parameters of deposition as well as to determine and evaluate the processes occurring during the coating deformation, methods for statistical data analysis for acoustic emission are applied. The maximum pulse amplitude, the average value, the median value, the mode value, the number of pulses, and the amplitude sum of all acoustic emission pulses for each coating are calculated. The multilayer CrN/NbN coatings consist of 68 layers with bilayer thickness of 230 nm. To increase the calculation reliability, the studied parameters are calculated on four scratches for each multilayer coating. The influence of deposition technological parameters on the structure deformation processes of multilayer CrN/NbN coatings occurred during scratch testing is determined.

Key words: multilayer coatings, cathodic arc evaporation, acoustic emission, deformation, methods for statistical data analysis, coating embrittlement.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i02/0199.html

DOI: https://doi.org/10.15407/mfint.47.02.0199

PACS: 07.05.Kf, 43.40.Le, 68.35.Iv, 68.60.Bs, 68.65.Ac, 81.15.-z

Citation: I. V. Serdyuk, S. I. Petrushenko, V. O. Stolbovyy, and M. Fialkowsky, Investigation of Properties of Multilayer Nitride CrN/NbN Coatings According to Acoustic Emission Parameters. Pt. 1. Multilayer CrN/NbN Coatings with a Double-Layer Thickness of 230 nm, Metallofiz. Noveishie Tekhnol., 47, No. 2: 199—215 (2025)


REFERENCES
  1. V. M. Perga, Novi Metody Doslidzhennya Fizychnykh Vlastyvostei Tverdykh Til. Akustychna Emisiya. Chastyny 1 i 2 [New Methods of Studying the Physical Properties of Solid Bodies. Acoustic Emission. Parts 1 and 2] (Kyiv: 1991).
  2. O. V. Gusev, Akustycheskaya Emissiya pri Deformatsii Monokristallov Tugoplavkikh Metallov [Acoustic Emission During Deformation of Single Crystals of Refractory Metals] (Moskva: Nauka: 1982).
  3. V. A. Kalitenko, V. M. Perga, and I. N. Salivonov, Phys. Solid State, 22, No. 6: 1838 (1980).
  4. O. V. Lyashenko and V. P. Veleshchuk, Ukr. J. Phys., 48, No. 9: 981 (2003) (in Ukrainian).
  5. M. V. Kravtsov, O. V. Lyashenko, and A. P. Onanko, Funct. Mater., 11, No. 2: 353 (2004).
  6. V. I. Artyukhov, K. B. Vakar, and V. I. Makarov, Akusticheskaya Emissiya i Yeyo Primenenie dlya Nerazrushayushchego Kontrolya v Yadernoi Ehnergetike [Acoustic Emission and its Application for Non-Destructive Testing in Nuclear] (Moskva: Atomizdat: 1980).
  7. A. E. Lord and W. Mason, Phys. Acoustic, 11: 289 (1975).
  8. DSTU 2374-94, Rozrakhunky na Mitsnist ta Vyprobuvannya Tekhnichnykh Vyrobiv. Akustychna Emisiya [Strength Calculations and Testing of Technical Products Acoustic Emission] (Kyiv: Derzhstandart Ukrainy: 1994) (in Ukrainian).
  9. O. I. Vlasenko, M. P. Kyseliuk, V. P. Veleshchuk, Z. K. Vlasenko, I. O. Lyashenko, and O. V. Lyashenko, Optoelectronics and Semiconductor Technique, 49: 5 (2014) (in Ukrainian).
  10. V. P. Babak and S. F. Filonenko, Advances in Aerospace Technology, 1, No. 1: 54 (1998) (in Ukrainian).
  11. G. I. Prokopenko, T. V. Golub, O. N. Kashevskaya, B. N. Mordyuk, N. A. Efimov, and V. G. Bezkorovainyi, Metallofiz. Noveishie Tekhnol., 28, No. 2: 151 (2006).
  12. P. I. Stoev, I. I. Papirov, and V. I. Moschenok, Probl. Atom. Sci. Tech., 1: 15 (2006).
  13. A. M. Leskovskyi and Sh. Sh. Azimov, Tech. Phys. Lett., 10, No. 5: 307 (1997).
  14. L. V. Tikhonov and G. I. Prokopenko, Tech. Diagnostics and Non-Dictructive Testing, 8: 73 (1991).
  15. A. Yu. Vinogradov and D. L. Merson, Low Temp. Phys., 44, No. 9: 1186 (2018).
  16. V. A. Kalitenko, I. Ya. Kucherov, V. M. Perga, and V. A. Tkhoryk, Phys. Solid State, 30, No. 12: 3677 (1988).
  17. A. M. Kosevich and V. S. Boyko, Physics-Uspekhi, 104: 201 (1971).
  18. J. D. Eshelby, Proc. Roy. Soc., 260: 222 (1962).
  19. N. Kiesewetter and P. Schiller, Scr. Met., 8: 249 (1974).
  20. B. Polyzos, E. Douka, and A. Trochidis, J. Appl. Phys., 89: 2124 (2001).
  21. D. G. Eitzen and H. N. G. Wadley, J. Res. Natl. Bur. Stand., 89: 75 (1984).
  22. A. Trochidis and B. Polyzos, J. Appl. Phys., 78: 170 (1995).
  23. A. M. Kosevich, Zh. Eksp. Teor. Fiz, 42: 152 (1962).
  24. A. M. Kosevich, Ukr. J. Phys., 84: 579 (1964).
  25. A. Trochidis and B. Polyzos, J. Mech. Phys. Solids, 42: 1933 (1994).
  26. A. Sendrowicz, A. O. Myhre, A. V. Danyuk, and A. Vinogradov, Mater. Sci. Eng. A, 856: 143969 (2022).
  27. Yu. B. Drobot and V. V. Korchevsky, Flaw Detection, 6: 38 (1985).
  28. V. R. Skalskyi, Yu. Ya. Matviiv, and O. G. Simakovych, Physicochemical Mechanicals of Materials, 48, No. 6: 76 (2012).
  29. R. M. Fisher and L. S. Lally, Canad. J. Phys., 45: 1147 (1967).
  30. T. Imanaka and K. Sano, Crystal Lattice Def., 4: 57 (1973).
  31. J. R. Frederick and D. K. Felbeck, Acoustic Emission (Baltimore: ASTM STP: 1972).
  32. N. H. Faisal, R. Ahmed, and R. L. Reuben, Int. Mat. Rev., 56, No. 2: 98 (2011).
  33. D. Rouby and P. Fleischmann, Internal Friction and Ultrasonic Attenuation Solids (1977), p. 811.
  34. C. B. Scruby and H. N. G. Wadley, Met. Science, 15: 599 (1981).
  35. F. P. Higgins and S. N. Carpenter, Acta Metallurg., 26: 133 (1978).
  36. D. R. James and S. N. Carpenter, J. Appl. Phys., 42: 4685 (1971).
  37. V. S. Boyko, V. F. Kivshik, and L. F. Krivenko, Zh. Eksp. Teor. Fiz, 78: 797 (1980).
  38. J. Tomastik, R. Ctvrtlik, P. Bohac, M. Drab, V. Koula, K. Cvrk, and L. Jastrabik, Key Eng. Mater., 662: 119 (2015).
  39. J. Tomastik, R. Ctvrtlik, M. Drab, and J. Manak, Coatings, 8, No. 5: 196 (2018).
  40. S. Yamamoto and H. Ichimura, J. Mater. Res., 7: 2240 (1992).
  41. Nicholas X. Randall, Surf. Coat. Tech., 380: 125092 (2019).
  42. H. Jensen, U. M. Jensen, and G. Sorensen, Surf. Coat. Technol., 74−75: 297 (1995).
  43. R. K. Choudhary and P. Mishra, J. Mater. Eng. Perform., 25: 2454 (2016).
  44. Tian-Shun Dong, Ran Wang, Guo-Lu Li, and Liu Ming, High Temp. Mater. Proc., 38: 601 (2019).
  45. P. Drobny, D. Mercier, V. Koula, S. I. Škrobáková, L. Čaplovič, and M. Sahul, Coatings, 11, No. 8: 919 (2021).
  46. M. A. Hassan, A. R. Bushroa, and R. Mahmoodian, Surf. Coat. Tech., 277: 216 (2015).
  47. B. Warcholiński, A. Gilewicz, Z. Kukliński, and P. Myśliński, Vacuum, 83, No. 4: 715 (2008).
  48. E. Hamzah, M. Ali, and M. R. HJ. Mohd Toff, Surf. Rev. Lett., 13, No. 6: 763 (2006).
  49. T. Z. Kattamis, F. Chang, and M. Levy, Surf. Coat. Tech., 43−44, No. 1: 390 (1990).
  50. K. Ikenaga, A. Yanagida, and A. Azushima, Journal of Solid Mechanics and Materials Engineering, 3, No. 2: 347 (2009).
  51. I. V. Serdiuk, S. I. Petrushenko, V. O. Stolbovyi, and M. Fijalkowski, Metallofiz. Noveishie Tekhnol., 46, No. 1: 23 (2024).
  52. V. P. Rudenko, V. O. Stolbovoy, I. V. Serdiuk, and K. G. Kartmazov, East.-Eur. J. Enterp. Tech., 48, No. 6/1: 66 (2010).