The Influence of the Size of the Brazing Gap on the Structure and Strength of Kovar Joints with Stainless Steel

S. V. Maksymova, P. V. Koval’chuk, V. V. Voronov

E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 20.05.2024; final version - 01.02.2025. Download: PDF

Comprehensive studies of the influence of brazing gap widths (100, 50, 20 μm) on the structure and mechanical properties of brazed dissimilar joints between Kovar and stainless steel, utilizing Cu−Mn−4.5Co−2.5Fe filler metal during high-temperature vacuum brazing, are presented. X-ray microspectral analysis reveals a two-phase structure in the brazed seams, when Cu−Mn−Co−2.5Fe filler metal is employed. This structure consists of both the α-Cu phase forming the main zone of the brazed seam (with a 100 or 500 μm gap) and discrete grains of the γ-phase (FeхMnyCoz)Me. During brazing, mutual-diffusion processes occur at the interphase boundary between the liquid filler metal and the solid base metal. The filler metal becomes saturated with constituent components of the base metal—chromium, cobalt, and nickel—thus, influencing the chemical composition and mechanical properties of the brazed seam. Micro-x-ray spectral analysis indicates that reducing the gap from 100 to 20 μm increases the γ-phase (FeхMnyCoz)Me content in the seam from 13.20% to 90.90%, while simultaneously decreasing the α-Cu phase from 86.83% to 9.10%. These structural changes positively affect the mechanical properties of the brazed dissimilar joints, leading to increased shear strength in Kovar–stainless steel overlap joints. With a gap size of 20 μm, the brazed samples exhibited failure primarily on the stainless steel (600 MPa).

Key words: copper−manganese−cobalt−iron filler metal, brazing gap, structure, strength, high-temperature vacuum brazing, solid solution.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i03/0271.html

DOI: https://doi.org/10.15407/mfint.47.03.0271

PACS: 06.60.Vz, 61.66.Dk, 61.72.Ff, 66.10.cg, 81.20.Vj, 81.70.Jb, 83.50.Uv

Citation: S. V. Maksymova, P. V. Koval’chuk, and V. V. Voronov, The Influence of the Size of the Brazing Gap on the Structure and Strength of Kovar Joints with Stainless Steel, Metallofiz. Noveishie Tekhnol., 47, No. 3: 271—285 (2025)


REFERENCES
  1. G. J. Qiao, H. J. Wang, J. Q. Gao, and Z. H. Jin, Mater. Sci. Forum, 486−487: 481 (2005).
  2. Y. J. Fang, X. S. Jiang, D. F. Mo, T. F Song, Z. Y. Shao, D. G. Zhu, M. H. Zhu, and Z. P. Luo, Adv. Mater. Sci. Eng., 2018: 1 (2018).
  3. G. Xia, C. Chen, J. Jia, W. Huang, H. Liu, and Y. Long, Weld. World, 68: 1427 (2024).
  4. B. Ahn, Metals., 11, No. 7: 1037 (2021).
  5. C. Xin, Y. Jiazhen, N. Li, W. Liu, J. Du, Y. Cao, and H. Shi, Ceram. Int., 42, No.11: 12586 (2016).
  6. L. F. Rudenko and T. P. Govorun, Alloy Steels and Alloys (Sumy: Sumy State University: 2012) (in Ukrainian).
  7. S. H. Baghjari, M. Gholambargani, and S. A. A. Akbari Mousavi, Lasers Manuf. Mater. Process., 6: 14 (2019).
  8. M. M. A. Fadhali, S. J. Zainal, Y. Munajat, A. Jalil, and R. Rahman, AIP Conf. Proc., 1217: 147 (2010).
  9. Yu. V. Kaletina, E. D. Efimova, and M. K. Romanov, Materials Science and Heat Treatment of Metals, 6: 26 (2014) (in Russian).
  10. J. Feng, M. Herrmann, A.-M. Reinecke, and A. Hurtado, J. Exp. Theor. Anal., 2, No. 1: 1 (2024).
  11. T. Song, X. Jiang, Z. Shao, D. Mo, D. Zhu and M. Zhu, Metals, 6, No. 11: 263 (2016).
  12. T. A. Mai and A. C. Spowage, Mater. Sci. Eng. A, 374, Nos. 1−2: 224 (2004).
  13. G. V. Ermolaev, V. V. Kvasnitsky, V. F. Kvasnitsky, S. V. Maksymova, V. F. Khorunov, and V. V. Chigarov, Payannya Metaliv [Brazing Materials] (Mykolaiv: NUK: 2015) (in Ukrainian).
  14. V. M. Radziievskyi, A. F. Budnyk, and V. B. Yuskaiev, Metallurgy of High-Temperature Technology of Non-Separable Joints (Sumy: Sumy State University: 2011) (in Ukrainian).
  15. E. Hedin, Proc. of the 7th Int. Brazing and Soldering Conf. (IBSC) (Apr. 15–18, 2018, New Orleans, USA), p. 155–160.
  16. S. V. Maksymova, V. F. Khorunov, and V. V. Voronov, The Paton Welding J., 3: 28 (2013).
  17. S. V. Maksymova, P. V. Kovalchuk, V. V. Voronov, and I. I. Datsiuk, The Paton Welding J., 8: 13 (2023).
  18. M. M. Shyshkov, Marochnyk Staley i Splaviv: Dovidnyk [Brand of Steels and Alloys: Directory] (Donetsk: 2000) (in Ukrainian).
  19. https://metallicheckiy-portal.ru/marki_metallov/stk/12X18H10T
  20. https://www.hightempmetals.com/techdata/hitempKovardata.php#4
  21. A. M. Zakharov, Diagrammy Sostoyaniya Dvoinykh i Troinykh Sistem [State Diagrams of Binary and Ternary Systems] (Moskva: Metallurgiya: 1990) (in Russian).
  22. S. V. Maksymova, Current Topics and Emerging Issues in Materials Sciences, 2: 14 (2023).
  23. T. B. Massalski, Binary Alloy Phase Diagrams (Materials Park, Ohio: ASM International: 1990). In CD.