Analysis of Deformation Forces in Simulation of a New Thermomechanical Wire Processing

I. E. Volokitina, E. A. Panin

Karaganda Industrial University, 30 Republic Ave., KZ-101400 Temirtau, Republic of Kazakhstan

Received: 27.03.2024; final version - 06.05.2024. Download: PDF

This work is concerned with the study of the emerging deformation forces during the implementation of a new method of thermomechanical wire processing that is a combined process including successive stages of wire drawing and cooling in a special chamber with liquid nitrogen. The analysis of forces is carried out by finite-elements’ modelling of the combined process within the DEFORM program. As found, the presence of intermediate heating to ambient temperature allows calculating the force according to the Krasilshchikov formula and the well-known nomogram of the tensile strength of AISI-316 steel at 20°C with minimal errors. The deformation without intermediate heating leads to the negative temperatures in the workpiece section in the second and third drawing cycles.

Key words: drawing, wire, modelling, steel, stress–strain state, cryogenic cooling.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i03/0335.html

DOI: https://doi.org/10.15407/mfint.47.03.0335

PACS: 46.50.+a, 62.20.F-, 81.20.Hy, 81.20.Wk, 81.40.Ef, 81.40.Jj, 83.50.Uv

Citation: I. E. Volokitina and E. A. Panin, Analysis of Deformation Forces in Simulation of a New Thermomechanical Wire Processing, Metallofiz. Noveishie Tekhnol., 47, No. 3: 335-346 (2025)


REFERENCES
  1. M. O. Kurin, O. O. Horbachov, A. V. Onopchenko, and T. V. Loza, Metallofiz. Noveishie Tekhnol., 44, No. 6: 785 (2022).
  2. G. I. Raab, L. A. Simonova, and G. N. Aleshin, Metalurgija, 55: 177 (2016).
  3. I. E. Volokitina, A. V. Volokitin, and E. A. Panin, Progress in Physics of Metals, 23, No. 4: 684 (2022).
  4. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies Construction Mater., 18: e02162 (2023).
  5. A. Bychkov and A. Kolesnikov, Metallography, Microstructure, and Analysis, 12: 564 (2023).
  6. I. E. Volokitina, Progress in Physics of Metals, 24, No. 3: 593 (2023).
  7. I. E. Volokitina, A. V. Volokitin, M. A. Latypova, V. V. Chigirinsky, and A. S. Kolesnikov, Progress in Physics of Metals, 24, No. 1: 132 (2023).
  8. E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, and Y. Liseitsev, Case Studies Construction Mater., 19: e02609 (2023).
  9. I. Volokitina, J. Chem. Technol. Metallurgy, 57: 631 (2022).
  10. W. H. Huang, C. Y. Yu, P. W. Kao, and C. P. Chang, Mater. Sci. Eng. A, 356: 321 (2004).
  11. K. Lu., Science, 345: 1455 (2014).
  12. T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, Science, 331: 1587 (2011).
  13. A. Volokitin, I. Volokitina, and E. Panin, Metallography, Microstructure, and Analysis, 11: 673 (2022).
  14. M. Murugesan, D. Won, and J. Johnson, Mater., 12: 609 (2019).
  15. N. Zhangabay, I. Baidilla, A. Tagybayev, Y. Anarbayev, and P. Kozlov, Case Studies Construction Mater., 18: e02161 (2023).
  16. I. Volokitina, A. Volokitin, A. Denissova, T. Fedorova D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Y. Kuatbay, and Y. Liseitsev, Case Studies Construction Mater., 19: e02346 (2023).
  17. I. E. Volokitina, Metal Sci. Heat Treatment, 63: 163 (2021).
  18. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metallurgy, 56: 643 (2021).