Modern Methods of Neutralizing the Negative Effect of Iron Impurities on the Properties of Hypereutectic Al–Si Alloys

T. H. Tsir, K. L. Shenevyd’ko

Physical and Technological Institute of Metals and Alloys, N.A.S. of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 18.01.2024; final version - 06.05.2024. Download: PDF

One of the main problems in the reuse of secondary hypereutectic Al–Si alloys is their contamination with iron. The review examines the influence of iron content on the mechanical properties and morphology of precipitated iron-containing phases, the effect on them of additions of additional chemical elements, methods of melt processing and temperature conditions of crystallization. As noted, the presence of iron, in addition to the negative effect, at some concentrations, has a positive effect on certain characteristics.

Key words: hypereutectic Al–Si alloys, iron-containing intermetallic compounds, primary silicon, morphology, mechanical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i04/0377.html

DOI: https://doi.org/10.15407/mfint.47.04.0377

PACS: 61.66.Dk, 62.20.Qp, 64.70.kd, 64.75.Op, 68.55.J-, 81.05.Bx, 81.40.Ef

Citation: T. H. Tsir and K. L. Shenevyd’ko, Modern Methods of Neutralizing the Negative Effect of Iron Impurities on the Properties of Hypereutectic Al–Si Alloys, Metallofiz. Noveishie Tekhnol., 47, No. 4: 377—390 (2025) (in Ukrainian)


REFERENCES
  1. C. Gong, H. Tu, C. Wu, J. Wang, and X. Su, Materials, 11, Iss. 3: 456 (2018).
  2. V. Vijeesh and K. Narayan Prabhu, Trans. of Indian Institute Metals, 67: 1 (2014).
  3. P. Kapranos, D. H. Kirkwood, H. V. Atkinson, J. T. Rheinlander, J. J. Bentzen, P. T. Toft, C. P. Debel, G. Laslaz, L. Maenner, S. Blais, J. M. Rodriguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta, and A. Giese, J. Mater. Proc. Tech., 135, Iss. 2–3: 271 (2003).
  4. Zhaohua Hu, Qile Huo, Yaxin Chen, Manping Liu, and Xuefei Chen, Metals, 13, Iss. 5: 968 (2023).
  5. A. G. Borisov, Protsessy Lit’ya, No. 4: 33 (2013) (in Russian).
  6. J. Jorstad and D. Apelian, Int. J. Metalcasting, 3: 13 2003.
  7. Xu Zhenming, Li Tianxiao, and Zhou Yaohe, J. Mater. Sci., 38: 4557 (2003).
  8. C. Bidmeshki, V. Abouei, H. Saghafian, S. G. Shabestari, and M. T. Noghani, J. Mater. Res. Technol., 5, Iss. 3: 250 (2016).
  9. S. Manasijevic, R. Radisa, S. Markovic, Z. Acimovic-Pavlovic, and K. Raic, Intermetallics, 19, Iss. 4: 486 (2011).
  10. C. Lin, S. Wu, S. Lü, P. An, and L. Wan, Intermetallics, 32: 176 (2013).
  11. C. Lin, S.-s. Wu, Z. Gu, W. Li, and P. An, Trans. Nonferrous Metals Soc. China, 23, Iss. 5: 1245 (2013).
  12. Yehua Jiang, Lu Li, Rong Zhou, Rongfeng Zhou, and Jia Wang, Solid State Phenom., 217–218: 37 (2015).
  13. S. G. Shabestari and E. Parshizfard, J. Alloys Compd., 509, Iss. 30: 7973 (2011).
  14. M. A. Moustafa, J. Mater. Process. Techn., 209, Iss. 1: 605 (2009).
  15. F. Průša, D. Vojtěch, M. Bláhová, A. Michalcová, T. F. Kubatík, and J. Čížek, Mater. Des., 75: 65 (2015).
  16. X. Cao and J. Campbell, Mater. Trans., 47, No. 5: 1303 (2006).
  17. S. Terzi, J. A. Taylor, Y.-H. Cho, L. Salvo, M. Suéry, E. Boller, and A. K. Dahle, Proc. 12th Int. Conf. Aluminium Alloys (Sept. 5–9, 2010) (Yokohama: The Japan Institute of Light Metals: 2010), p. 1273.
  18. F. Průša, M. Bláhová, D. Vojtěch, V. Kučera, A. Bernatiková, T. F. Kubatík, and A. Michalcová, Materials, 9, Iss. 12: 973 (2016).
  19. M. S. Kaiser, J. Mater. Eng. Structures, 8: 241 (2021).
  20. V. Deev, E. Prusov, O. Prikhodko, E. Ri, A. Kutsenko, and S. Smetanyuk, Arch. Foundry Eng., 20, Iss. 4: 101 (2020).
  21. A. Darvishi, A. Maleki, M. Atabaki, and M. Zargami, Metall. Mater. Eng., 16, No. 1: 11 (2010).
  22. C. Bidmeshki, V. Abouei, H. Saghafian, S. G. Shabestari, and M. T. Noghani, J. Mater. Res. Technol., 5, Iss. 3: 250 (2016).
  23. Q. Li, Y. Zhu, B. Li, W. Ding, Y. Lan, T. Xia, and Q. Du, Mater. Res. Exp., 6: 016506 (2018).
  24. L. Sweet, S. M. Zhu, S. X. Gao, J. A. Taylor, and M. A. Easton, Met. Mater. Trans. A, 42: 1737 (2011).
  25. A. G. Borisov, O. P. Fedorov, and V. V. Maslov, J. Cryst. Growth, 112, Iss. 2–3: 463 (1991).
  26. S. G. Shabestari, M. Mahmudi, M. Emamy, and J. Campbell, Int. J. Cast Metals Res., 15, Iss. 1: 17 (2002).
  27. D. Bolibruchová, R. Podprocká, R. Pastirčák, and K. Major-Gabryś, Arch. Metall. Mater., 63, Iss. 4: 1883 (2018).
  28. L. Zhang, J. Gao, L. N. W. Damoah, and D. G. Robertson, Miner. Process. Extr. Metall. Rev., 33, Iss. 2: 99 (2012).
  29. Meng Sha, Shusen Wu, and Li Wan, Mater. Sci. Eng. A, 554: 142 (2012).
  30. O. Uzun, M. F. Kilicaslan, and F. Yılmaz, Mater. Sci. Eng. A, 607: 368 (2014).
  31. M. S. Kaisera, S. H. Sabbirb, and M. Sy, Mater. Res., 21, Iss. 4: 1 (2018).
  32. L. G. Hou, C. Cui, and J. S. Zhang, Mater. Sci. Eng. A, 527, Iss. 23: 6400 (2010).
  33. A. J. Plotkowski, Refinement of the Cast Microstructure of Hypereutectic Aluminum–Silicon Alloys with an Applied Electric Potential (Master Theses of Sci. Eng.) (Grand Valley State University: 2012).
  34. A. G. Prigunova, M. V. Koshelev, and A. G. Borisov, Mater. Sci. Technol., 38, Iss. 4: 246 (2022).
  35. A. G. Borisov, A. Nuradynov, and V. U. Sheigam, J. Metallic Mater. Res., 8, Iss. 1: 25 (2023).
  36. H. K. Feng, S. R. Yu, Y. L. Li, and L. Y. Gong, J. Mater. Process. Technol., 208, Iss. 1–3: 330 (2008).
  37. A. H. Borysov and T. H. Tsir, Metallofiz. Noveishie Tekhnol., 45, No. 1: 95 (2023) (in Ukrainian).
  38. P. Mikolajczak, Materials, 16, Iss. 9: 3304 (2008).
  39. P. K. Sood, Rakesh Sehgal, and D. K. Dwivedi, Sādhanā, 42, No. 3: 365 (2017).
  40. S. S. Wu, C. Lin, S. L. Lü, P. An, and L. Wan, Mater. Sci. Forum, 783–786: 288 (2014).
  41. Y. Osawa, S. Takamori, T. Kimura, K. Minagawa, and H. Kakisawa, Mater. Trans., 48, Iss. 9: 2467 (2007).
  42. C. J. Todaro, M. A. Easton, D. Qiu, G. Wang, D. H. StJohn, and M. Qian, J. Mater. Process. Technol., 271: 346 (2019).
  43. Q. Wang, H. Geng, S. Zhang, H. Jiang, and M. Zuo, Metal. Mater. Trans. A, 45: 1621 (2014).
  44. A. H. Pryhunova, O. A. Shcherets’kyy, M. V. Koshelyev, V. D. Babyuk, and Ye. A. Zhydkov, Metallofiz. Noveishie Tekhnol., 44, No. 5: 671 (2022) (in Ukrainian).
  45. M. Ramadan, J. Minerals Mater. Characterization Eng., 3: 390 (2015).
  46. C. L. Xu and Q. C. Jiang, Mater. Sci. Eng. A, 437, Iss. 2: 451 (2006).
  47. R. O. Suzuki, Y. Komatsu, K. F. Kobayashi, and P. H. Shingu, J. Mater. Sci., 18: 1195 (1983).
  48. P. K. Sood, Rakesh Sehgal, and D. K. Dwivedi, Sādhanā, 42, No. 3: 365 (2017).