Peculiarities of Atomic Migration in the Near-Surface Layers of the 2099 Al−Cu−Li Alloy during Ultrasonic Impact Treatment

O. V. Filatov$^{1}$, V. F. Mazanko$^{2}$, S. Ye. Bogdanov$^{1}$, B. M. Mordyuk$^{1}$, Ye. I. Bogdanov$^{1}$, S. P. Vorona$^{1}$, L. Kaczmarek$^{2}$, М. Klich$^{3}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Lodz University of Technology, 116 Zeromskiego Str., 90-924 Lodz, Poland
$^{3}$Institute of Security Technologies ‘MORATEX’, 3 Marii Sklodowskiej-Curie Str., 90-505 Lodz, Poland

Received: 18.12.2024; final version - 13.03.2025. Download: PDF

The redistribution of 60Со atoms in the near-surface layer 2099-T83 Al−Cu−Li alloy during ultrasonic impact treatment (UIT) is studied. As shown by microdurometric analysis, the UIT results in a significant hardening of 2099 Al−Cu−Li alloy. However, the increase in the UIT duration results in the microhardness decrease, which is explained by the stress-relaxation processes occurred in the alloy. The higher microhardness of the UIT-processed alloy is stable for more than a half year. The radioactive isotope technique reveals a nonmonotonic dependence of the 60Co-atoms’ distribution curves observed for the surface layers of the alloy samples UIT-processed for 60, 120 and 180 seconds. Moreover, the optimal mode is the UIT processing for 120 s. The calculated mass-transfer coefficients during UIT performed at room temperature match up the diffusion coefficients known for the stationary homogenizing annealing at premelting temperatures. The mass-transfer coefficient value for 60Со in 2099 Al−Cu−Li alloy during the room-temperature UIT exceeds the diffusion coefficient of 60Со into aluminium at Т = 300 K about ≅ 108 times that indicates that the phenomenon of anomalous mass transfer is realized.

Key words: ultrasonic impact treatment, diffusion, mass transfer, radioactive isotope, deformation, microhardness.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i04/0405.html

DOI: https://doi.org/10.15407/mfint.47.04.0405

PACS: 61.72.sh, 61.82.Bg, 62.0.Qp, 62.80.+f, 68.35.Fx, 81.40.Ef, 81.70.Jb

Citation: O. V. Filatov, V. F. Mazanko, S. Ye. Bogdanov, B. M. Mordyuk, Ye. I. Bogdanov, S. P. Vorona, L. Kaczmarek, and М. Klich, Peculiarities of Atomic Migration in the Near-Surface Layers of the 2099 Al−Cu−Li Alloy during Ultrasonic Impact Treatment, Metallofiz. Noveishie Tekhnol., 47, No. 4: 405—414 (2025)


REFERENCES
  1. E. A. Starke and J. T. Staley, Prog. Aerosp. Sci., 32: 131 (1996).
  2. A. M. Abd El-Hameed and Y. A. Abdel-Aziz, J. Adv. Res. Appl. Sci. Eng. Technol., 22, No. 1: 1 (2021).
  3. I. J. Polmear, Mater. Trans. JIM, 37, No. 1: 12 (1996).
  4. Y. Lin, Z. Zheng, S. Li, X. Kong, and Y. Han, Mater. Charact., 84: 88 (2013).
  5. R. J. Rioja and J. Liu, Metall. Mater. Trans. A, 43, No. 9: 3325 (2012).
  6. E. Balducci, L. Ceschini, S. Messieri, S. Wenner, and R. Holmestad, Mater. Design, 119: 54 (2017).
  7. https://www.smithshp.com/pdf/2099-aluminium-lithium.pdf
  8. Ya. G. Goroshchenko, Fiziko-Khimicheskiy Analiz Gomogennykh i Geterogennykh Sistem [Physicochemical Analysis of Homogeneous and Heterogeneous Systems] (Kiev: Naukova Dumka: 1978) (in Russian).
  9. P. Yu. Volosevich, G. I. Prokopenko, and B. M. Mordyuk, Metallofiz. Noveishie Tekhnol., 22, No. 9: 61 (2000) (in Russian).
  10. B. N. Mordyuk and G. I. Prokopenko, Ultrasonic Impact Treatment—An Effective Method for Nanostructuring the Surface Layers in Metallic Materials, Handbook of Mechanical Nanostructuring (Ed. M. Aliofkhazraei) (Wiley-VCH: Verlag, 2015).
  11. S. P. Chenakin, B. M. Mordyuk, N. I. Khripta, and V. Yu. Malinin, Metallofiz. Noveishie Tehnol., 45, No. 9: 1109 (2023).
  12. J. F. Babikova, A. A. Gusakov, V. M. Minajev, and G. G. Rjabova, Analiticheskaya Avtoradiographiya [Analytical Autoradiography] (Moskva: Energoatomizdat: 1985) (in Russian).
  13. L. N. Larikov and V. I. Isaichev, Diffuziya v Metallakh i Splavakh: Spravochnik [Diffusion in Metals and Alloys: Handbook] (Kiev: Naukova Dumka: 1987) (in Russian).
  14. P. L. Moore and G. Booth, The Welding Engineer’s Guide to Fracture and Fatigue. 1st Edition (Woodhead Publishing Series in Metals and Surface Engineering) (November 3, 2014).
  15. J. Hirth and J. Lothe, Theory of Dislocations (Krieger Publishing Company: 1982).
  16. G. I. Eskin and D. G. Eskin, Ultrasonic Treatment of Light Alloy Melts. 2nd Edition (Boca Raton: CRC Press: 2017).
  17. S. Renwick, Handbook of Aluminium Alloys. Illustrated Edition (New York: Research Press: March 5, 2015).
  18. Y. Tang, D. H. Xiao, L. P. Huang, R. X. You, X. Y. Zhao, N. Lin, Y. Z. Ma, and W. S. Liu, Mater. Charact., 191: 112135 (2022).
  19. O. M. Soldatenko, O. V. Filatov, B. M. Mordyuk, and S. M. Soldatenko, Metallofiz. Noveishie Tekhnol., 45, No. 1: 65 (2023).
  20. D. S. Gertzriken, V. F. Mazanko, V. M. Tyshkevich, and V. M. Falchenko, Massoperenos pri Nizkikh Temperaturakh v Usloviyakh Vneshnikh Vozdeistviy [Mass Transfer at Low Temperatures under External Influences] (Kiev: RIO IMF: 2001) (in Russian).
  21. S. D. Gertzriken and I. Ya. Dekhtyar, Diffuziya v Metallakh i Splavakh v Tverdoy Faze [Diffusion in Metals and Alloys in the Solid Phase] (Moskva: GIFML: 1960) (in Russian).
  22. V. M. Mironov, V. F. Mazanko, D. S. Gertzriken, and O. V. Filatov, Massoperenos i Fazoobrazovanie v Metalakh pri Impulsnykh Vozdeistviyakh [Mass Transfer and Phase Formation in Metals under Pulsed Influences] (Samara: Samarskiy Universitet: 2001) (in Russian).
  23. A. Filatov, A. Pogorelov, D. Kropachev, and O. Dmitrichenko, Defect. Diffus. Forum, 363: 173 (2015).
  24. J. R. Manning, Diffusion Kinetics for Atoms in Crystals (Princeton, NJ: D. Van Nostrand Co., Inc.: 1968).