Surface Properties of High-Strength Cast-Iron Parts with Wear-Resistant Composite Coatings Synthesized by Electrospark Alloying Method. Pt. 1. Specific Aspects of Mass Transfer; Geometric, Topographic, and Mechanical Charcteristic Features of Strengthened Surfaces

V. B. Tarelnyk$^{1}$, O. P. Haponova$^{2,3}$, N. V. Tarelnyk$^{1}$, M. Yu. Dumanchuk$^{1}$, M. M. Maifat$^{1}$, V. O. Gerasimenko$^{1}$, M. O. Mikulina$^{1}$, A. D. Polyvanyi$^{1}$, V. O. Ohrimenko$^{2}$, O. V. Semernya$^{1}$, M. Yu. Vasylenko$^{1}$, V. M. Kozin$^{1}$

$^{1}$Sumy National Agrarian University, 160 Gerasima Kondratyeva St., UA-40021 Sumi, Ukraine
$^{2}$Sumy State University, 116 Kharkivska St., UA-40007 Sumi, Ukraine
$^{3}$Institute for Fundamental Technological Research of the Polish Academy of Sciences, 5B Adolf Pawiński St., 02-016 Warsaw, Poland

Received: 25.01.2024; final version - 27.06.2024. Download: PDF

This paper describes the results of mass-transfer specific-aspect studies during electrospark alloying (ESA) process for the samples made of the high-strength ВЧ50 (VCh50) cast iron. The ESA was carried out by the compact electrode-tools (ETs) made with the use of the powder metallurgy (PM) method and having the composition of 90% ВК6 (VK6) + 10% 1M and 1M, where 1M is of 70% Ni, 20% Cr, 5% Si, 5% B, as well as by the ETs made of ВК6 (VK6) hard alloy and Х20Н80 (Kh20N80) nichrome wire. When using those, the samples had been pre-coated with the special technological saturating media СТНС (STSM) of the compositions 0.5% Si+0.5% B+2% Cr+7% Ni+90 petroleum jelly and 5% Si + 5% B+ 90% petroleum jelly, respectively. The ESA of the samples has carried out by cyclic alloying (1 cycle = 0.5 min). The mass-transfer study has shown that the amount of the material, which is transferred from the anode (Δma) to the cathode (Δmк), increases with an increase in the ESA time, while both the roughness and the continuity of the coating do not change practically. The largest amount of the material is transferred at the beginning of the ESA process; then, the mass-transfer process is gradually decreasing, stops completely, and eventually, it may be changed by destruction of the applied layer, i.e., Δmк may become negative. With an increase in the discharge energy (Wp), the mass-transfer process increases, but the process of the applied coating layer destruction begins earlier, while the roughness of the coating increases and its continuity decreases. At Wр = 0.55 J, the ESA process, which is carried out by the ETs made by the PM method and having the composition of 90% ВК6 (VK6) + 10% 1M and with 1M of 70% Ni, 20% Cr, 5% Si, 5% B, as well as by the ETs made of ВК6 (VK6) hard alloy and Х20Н80 (Kh20N80) nichrome wire, with the special technological saturating media СТНС (STSM) of the compositions of 0.5% Si + 0.5% B + 2% Cr + 7% Ni + 90 petroleum jelly and 5% Si + 5% B + 90% petroleum jelly, respectively, for the samples made of the ВЧ50 (VCh50), and the above ESA process are accompanied by decreasing yield strength and strength limit and increasing the relative elongation (δ). The roughness of the surface layer increases, and the continuity (S) of the coating decreases. After non-abrasive ultrasonic finishing, the yield strength and strength limit increase, and δ decreases. Surface roughness decreases and S increases. As Wp increases from 0.55 to 1.3 and 3.4 J and, at using the same ETs, yield strength and strength limit decrease, and δ increases, the roughness of the coating increases, and S decreases. After the next non-abrasive ultrasonic finishing, the yield strength and strength limit increase, and δ decreases, surface roughness decreases and S increases.

Key words: electrospark alloying, electrode tool, anode, cathode, mass transfer, surface layer, coating, structure, microhardness, roughness, continuity.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i04/0427.html

DOI: https://doi.org/10.15407/mfint.47.04.0427

PACS: 62.20.Qp, 68.35.Ct, 68.35.Gy, 68.55.J-, 68.55.Ln, 81.15.Pq, 81.65.Lp

Citation: V. B. Tarelnyk, O. P. Haponova, N. V. Tarelnyk, M. Yu. Dumanchuk, M. M. Maifat, V. O. Gerasimenko, M. O. Mikulina, A. D. Polyvanyi, V. O. Ohrimenko, O. V. Semernya, M. Yu. Vasylenko, and V. M. Kozin, Surface Properties of High-Strength Cast-Iron Parts with Wear-Resistant Composite Coatings Synthesized by Electrospark Alloying Method. Pt. 1. Specific Aspects of Mass Transfer; Geometric, Topographic, and Mechanical Charcteristic Features of Strengthened Surfaces, Metallofiz. Noveishie Tekhnol., 47, No. 4: 427-451 (2025) (in Ukrainian)


REFERENCES
  1. DSTU 3925-99 Chavun z Kulyastym Grafitom dlya Vylyvkiv. Marky. Z Popravkamy [Ductile Iron for Castings. Grades. With Amendments] (IPS № 9-2002, IPS № 8-2006) (in Ukrainian).
  2. V. P. Movchan and M. M. Berezhnyi, Osnovy Metalurgii [Fundamentals of Metallurgy] (Dnipropetrovsk: Porohy: 2001) (in Russian).
  3. O. K. Antonov, Ukrainska Radyanska Ehntsyklopediya [Ukrainian Soviet Encyclopedia] (Kyiv: Holovna Redaktsiia URE: 1985) (in Ukrainian).
  4. N. A. Kalin, Vostochno-Yevropeiskiy Zhurnal Peredovykh Tekhnologiy, 2:19 (2008) (in Russian).
  5. M. A. Kalin, Novi Materialy i Tekhnologii Dlya Zvaryuvannya Chavunu [New Materials and Technologies for Welding Cast Iron] (Kharkiv: NTMT: 2009) (in Ukrainian).
  6. V.B. Tarelnik, Materiały VI Konferencji Naukowo-Technicznoj TEROTECHNOLOGIA-2009 (Targi–Kielce, 29–30 września 2009) (Targi–Kielce: 2009).
  7. Yu. S. Samotugina, B. A. Lyashenko, and O. О. Bezumova, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1105 (2021) (in Ukrainian).
  8. O. P. Shylina, Visnyk Mashynobuduvannya ta Transportu, 2: 115 (2017).
  9. T.A. Hurei, Visnyk KhNADU, 74: 48 (2016).
  10. T. S. Skoblo, O. I. Sidashenko, and O. V. Saichuk, Korpusni Detali z Chavuniv ta Yikh Yakisni Pokaznyky [Useful Cast Iron Parts and Their Quality Indicators] (Kharkiv: Disa plius: 2019) (in Ukrainian).
  11. A. Sidashenko, О. Tikhonov, S. Luzan, Т. Skoblo, N. Pilgui, V. Avetisyan, O. Saychuk, and V. Manilo, Repair Technology of Machinery and Equipment, (Kharkiv: Co Ltd «PromArt»: 2017).
  12. T. Skoblo, S. Romanyuk, and T. Maltsev, Systemy Rozroblennya ta Postanovlennya Produktsii na Vyrobnytstvo. Industriia 4.0. Suchasnyi Napryamok Avtomatyzatsii ta Obminu Danymy u Vyrobnychykh Tekhnologiyakh: Materialy II Mizhnar. Nauk.-Prakt. Konf. (Sumy: 2017).
  13. T. Skoblo, О. Klochko, E. Belkin, and А. Sidashenko, International Journal of Mineral Processing and Extractive Metallurgy, 2, No. 3: 34 (2017).
  14. T. S. Skoblo, A. K. Avtukhov, O. I. Sidashenko, O. Iu. Klochko, Yu. L. Belkin, and R. H. Sokolov, Sposib Vyrobnytstva Prokatnykh Valkiv [Method of Manufacturing Rolling Rolls], Patent 105761UA (opubl. 11.04.2016) (in Ukrainian).
  15. O. I. Sidashenko, O. V. Tikhonov, T. S. Skoblo, O. D. Martynenko, O. O. Honcharenko, O. V. Saichuk, V. K. Avetisian, A. K. Avtukhov, I. M. Rybalko, P. S. Syromiatnikov, V. A. Bantkovskyi, and V. L. Manilo, Praktykum z Remontu Mashyn. T. 1: Zagalnyi Tekhnologichnyi Protses Remontu ta Tekhnologii Vidnovlennya i Zmitsnennya Detalei Mashyn [Workshop on Machine Repair. Vol. 1: General Technological Process of Repair and Technology of Restoration and Strengthening of Machine Parts] (Kharkiv: TOV «PromArt»: 2018) (in Ukrainian).
  16. I. P. Shatskyi, V. V. Perepichka, and L. Ya. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020) (in Ukrainian).
  17. M. S. Storozhenko, A. P. Umanskii, A. E. Terentiev, and I. M. Zakiev, Powder Metallurgy and Metal Ceramics, 56, Nos. 1–2: 60 (2017).
  18. O. Umanskyi, M. Storozhenko, G. Baglyuk, O. Melnyk, V. Brazhevsky, O. Chernyshov, O. Terentiev, Yu. Gubin, O Kostenko, and I. Martsenyuk, Powder Metallurgy and Metal Ceramics, 59, Nos. 7–8: 434 (2020).
  19. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022).
  20. B. O. Trembach, M. G. Sukov, V. A. Vynar, I. O. Trembach, V. V. Subbotina, O. Yu. Rebrov, O. M. Rebrova, and V. I. Zakiev, Metallofiz. Noveishie Tekhnol., 44, No. 4: 493 (2022).
  21. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European Journal of Enterprise Technologies, 1, No. 5: 53 (2016) (in Ukrainian).
  22. I. Ivasenko, V. Posuvailo, H. Veselivska, and V. Vynar, International Scientific and Technical Conference on Computer Sciences and Information Technologies, 2: 9321900 (2020).
  23. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022).
  24. М. М. Student, V. M. Dovhunyk, V. M. Posuvailo, I. V. Koval’chuk, and V. M. Hvozdets’kyi, Mater. Sci., 53, No. 3: 359 (2017).
  25. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83 (2022).
  26. T. S. Skoblo, A. A. Goncharenko, N. V. Firsova, and A. N. Legkobyt, Materialy Nauchno-Prakticheskoy Konferentsii Studentov i Magistrantov BGATU [Materials of the Scientific and Practical Conference of Students and Graduate Students BGATU] (2019) (in Russian).
  27. A. V. Karakurkchi, Functional Materials, 22, No. 2: 181 (2015).
  28. G. S. Yar-Mukhamedova, N. D. Sakhnenko, M. V. Ved’, I. Y. Yermolenko, and S. I. Zyubanova, Mater. Sci. Eng., 213: 012019 (2017).
  29. A. D. Pogrebnjak, A. A. Bagdasaryan, P. Horodek, V. Tarelnyk, V. V. Buranich, H. Amekura, N. Okubo, N. Ishikawa, and V.M. Beresnev, Materials Letters, 303: 130548 (2021).
  30. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplyanchenko, N. S. Yevtushenko, and V. O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018).
  31. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, B. Antoszewski, C. Kundera, V. Martsynkovskyy, M. Dovzhyk, M. Dumanchuk, and O. Vasilenko, NAP 2019. Springer Proceedings in Physics. Vol. 240 (2019), p. 195.
  32. O. Gaponova, Cz. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering (Singapore: Springer: 2019).
  33. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering (Singapore: Springer: 2020).
  34. O. M. Myslyvchenko, O. P. Gaponova, V. B. Tarelnyk, and M. O. Krapivka, Powder Metallurgy and Metal Ceramics, 59, Nos. 3–4: 201 (2020).
  35. O. P. Umanskyi, M. S. Storozhenko, V. B. Tarelnyk, O. Y. Koval, Y. V. Gubin, N. V. Tarelnyk, and T. V. Kurinna, Powder Metallurgy and Metal Ceramics, 59, Nos. 1–2: 57 (2020).
  36. N. V. Tarelnyk, Metallofiz. Noveishie Tekhnol., 44, No. 8: 1037 (2022).
  37. V. B. Tarelnyk, O. P. Gaponova, Ie. V. Konoplianchenko, N. V. Tarelnyk, M. Yu. Dumanchuk, V. O. Pirogov, T. P. Voloshko, and D. B. Hlushkova, Metallofiz. Noveishie Tekhnol., 44, No. 12: 1643 (2022) (in Ukrainian).
  38. V. B. Tarelnyk, O. P. Gaponova, Ie. V. Konoplianchenko, N. V. Tarelnyk, M. Y. Dumanchuk, M. O. Mikulina, V. O. Pirogov, S. O. Gorovoy, and N. K. Medvedchuk, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1475 (2022) (in Ukrainian).
  39. O. P. Gaponova and N. V. Tarelnyk, Metallofiz. Noveishie Tekhnol., 44, No. 9: 1103 (2022) (in Ukrainian).
  40. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplyanchenko, N. S. Yevtushenko, and V. O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian).
  41. V. B. Tarelnyk, O. P. Gaponova, G. V. Kirik, Ye. V. Konoplyanchenko, N. V. Tarelnyk, M. O. Mikulina, Metallofiz. Noveishie Tekhnol, 42, No. 5: 655 (2020) (in Ukrainian).
  42. O. P. Gaponova, V. B. Tarelnyk, V. S. Martsynkovskyy, G. V. Kirik, and A. B. Batalova, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1121 (2021) (in Ukrainian).
  43. O. P. Gaponova, V. B. Tarelnyk, V. S. Martsynkovskyy, Y. I. Semirnenko, and O. V. Ryasnaya, Metallofiz. Noveishie Tekhnol., 43, No. 9: 1155 (2021) (in Ukrainian).
  44. V. B. Tarelnyk, I. V. Konoplianchenko, O. P. Gaponova, O. A. Sarzhanov, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 58, Nos. 11–12: 703 (2020).
  45. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 148 (2012).
  46. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 157 (2012).
  47. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, N. V.Tarelnyk, and O. O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 2: 173 (2019) (in Ukrainian).
  48. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, V. S. Martsynkovskyy, N. V. Tarelnyk, and O. O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 3: 313 (2019) (in Ukrainian).
  49. V. B. Tarelnyk, O. P. Gaponova, Ie. V. Konoplianchenko, S. O. Gorovoy, and N. K. Medvedchuk, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1475 (2022) (in Ukrainian).
  50. B. Antoszewski, O. P. Gaponova, V. B. Tarelnyk, O. M. Myslyvchenko, P. Kurp, T. I. Zhylenko, and I. Konoplianchenko, Materials, 14: 739 (2021).
  51. V. B. Tarelnyk, I. V. Konoplianchenko, O. P. Gaponova, O. A. Sarzhanov, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 58, Nos. 11–12: 703 (2020).
  52. V. Martsynkovskyy, V. Tarelnyk, V. Martsynkovskyy, P. Furmańczyk, and N. Tarelnyk, AIP Conference Proc., 2017, No. 1: 020017 (2018).
  53. V. Tarelnvk, A. Kozachenko, V. Martsynkovskyy, C. Kundera, and O. Gaponova, Proc. of the 2018 IEEE 8th International Conference on Nanomaterials: Applications and Properties—NAP 2018, p. 8915077 (2018).
  54. V. B. Tarelnyk, O. P. Gaponova, V. B. Loboda, M. A. Mikulina, and B. A. Sarzhanov, Surface Engineering and Applied Electrochemistry, 57, No. 2: 173 (2021).
  55. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, B. Sarzhanov, and A. Polyvanyi, Proc. of the 2022 IEEE 12th International Conference «Nanomaterials: Applications and Properties»—NAP 2022 (2022).
  56. V. Tarelnyk, O. Gaponova, V. Martsynkovskyy, T. Voloshko, and O. Semernya, Proc. of the 2020 IEEE 10th International Conference on «Nanomaterials: Applications and Properties»—NAP 2020, p. 9309618 (2020).
  57. V. Tarelnyk, O. Gaponova, V. Martsynkovskyy, N. Tarelnyk, and A. Polyvanyi, Proc. of the 2021 IEEE 11th International Conference «Nanomaterials: Applications and Properties»—NAP 2021 (2021).
  58. O. P. Gaponova, V. B. Tarelnyk, B. Antoszewski, O. M. Myslyvchenko, and J. Hoffman, Materials, 15, No. 17: 6085 (2022).
  59. V. Tarelnyk, I. Konoplianchenko, V. Martsynkovskyy, M. Dovzhyk, M. Dumanchuk, M. Goncharenko, B. Antoszewski, and O. Gaponova, 8th IEEE International Conference on Nanomaterials: Applications and Properties—NAP 2018, p. 03TFNMC26 (2018).
  60. O. V. Ivankova, O. V. Harashchuk, V. I. Kutsenko, V. V. Shcherbyna, D. V. Chyzhevsʹkyy, Ya.V. Babych, and M. O. Tikhonov, Visnyk PDAA, 4: 283 (2020).
  61. M. M. Student, V. M. Hvozdetskyi, T. R. Stupnytskyi, and Y. V. Dzioba, Science and Innovation, 13, No. 6: 34 (2017).
  62. V. M. Gvozdecki, Visnik Nacional’noi Academii Nauk Ukrainy, 3: 79 (2018) (in Ukrainian).
  63. B. A. Lyashenko, Ye. K. Solovykh, and V. I. Mirnenko, Optimizatsiya Tekhnologii Naneseniya Pokrytiy po Kriteriyam Prochnosti i Iznosostoykosti [Optimization of Coating Application Technology According to Durability and Wear Resistance Criteria] (Kyiv: IPP NANU: 2010) (in Russian).
  64. T. S. Skoblo, N. N. Rybalko, A. V. Tykhonov, and A. D. Martynenko, Tekhnichnyy Servis Agropromyslovoho, Lisovoho ta Transportnoho Kompleksiv, 15: 60 (2019) (in Ukrainian).
  65. B. Carcel, J. Sampedro, A. Ruescas, and X. Toneu, Physics Procedia, 12: 353 (2011).
  66. A. Guzanova, M. Džupon, D. Draganovská, J. Brezinová, J. Viňáš, D. Cmorej, E. Janoško, and P. Maruschak, Acta Metallurgica Slovaca, 26, No. 2: 37 (2020).
  67. F. Kh. Burumkulov, P. P. Lezin, P. V. Senin, V. I. Ivanov, S. A. Velichko, and P. A. Ionov, Ehlektroiskrovyye Tekhnologii Vosstanovleniya i Uprochneniya Detaley Mashin i Instrumentov (Teoriya i Praktika) [Electrospark Technologies for Restoration and Hardening of Parts of Machines and Tools (Theory and Practice)] (Saransk: Krasnyy Oktyabr’: 2003) (in Russian).
  68. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and B. Sarzhanov, Key Engineering Materials, 864: 265 (2020).
  69. V. B. Tarel’nik, A. V. Paustovskii, Y. G Tkachenko, V. S. Martsinkovskii, E. V. Konoplyanchenko, and K. Antoshevskii, Surf. Engin. Appl.Electrochem., 53: 285 (2017).
  70. V. B. Tarelnyk, O. P. Gaponova, V. I. Melnyk, N. V. Tarelnyk, V. M. Zubko, V. M. Vlasovets, Ie. V. Konoplianchenko, S. G. Bondarev, O. V. Radionov, M. M. Mayfat, V. O. Okhrimenko, and A. V. Tkachenko, Metallofiz. Noveishie Tekhnol., 45: 683 (2023) (in Ukrainian).