The Influence of Mechanical Deformations on the Optical Properties of Metal Alloys in the X-Ray Range

A. Yu. Ovcharenko, Yu. M. Ovcharenko

The Institute of Applied Physics, N.A.S. of Ukraine, 58 Petropavlivska Str., UA-40000 Sumy, Ukraine

Received: 29.04.2024; final version - 14.01.2025. Download: PDF

Within the framework of the Fresnel–Kirchhoff theory, a computer simulation of the interaction of x-ray radiation with a wavelength of λ = 1.5374 Å (line CuKα) with three-dimensional samples of arbitrary geometric shape made of alloys Fe–13%Cr–(2, 4, 6, 8)%Al and Fe–3%Cu–1%Ni at a temperature of 300 K, which are subjected to compression–tension deformation. The values of the relative deformation ε are equal to −0.10, −0.05, 0.00, 0.05, and 0.10. As shown, the x-ray radiation interacting with matter is very sensitive to changes in the electron density of the material. Based on known theoretical relations and the results of molecular-dynamic modelling, an approach of numerical calculations of refraction decrement δ and absorption coefficient β of x-ray radiation for multicomponent alloys with different percentage composition of chemical elements and different amount of deformation is proposed. The results of this work are applied in nature and can be useful both to developers of laboratory equipment and to specialists in the field of materials science.

Key words: x-ray diffraction, Fresnel–Kirchhoff theory, phase contrast, optical refraction decrement, absorption coefficient, mechanical deformation.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i05/0453.html

DOI: https://doi.org/10.15407/mfint.47.05.0453

PACS: 07.05.Tp, 42.25.Bs, 42.30.Va, 61.05.cp, 61.72.Ff, 62.20.F-, 81.70.Fy

Citation: A. Yu. Ovcharenko and Yu. M. Ovcharenko, The Influence of Mechanical Deformations on the Optical Properties of Metal Alloys in the X-Ray Range, Metallofiz. Noveishie Tekhnol., 47, No. 5: 453-471 (2025) (in Ukrainian)


REFERENCES
  1. H. Shi, J. Zou, J. Chen, P. Xiao, F. Cao, and S. Liang, Mater. Res. Express, 7, No. 11: 116504 (2020).
  2. K. Nakagawa, M. Hayashi, K. Takano-Satoh, H. Matsunaga, H. Mori, K. Maki, Y. Onuki, S. Suzuki, and S. Sato, Quantum Beam Sci., 4, No. 4: 36 (2020).
  3. L. Massimi, S. J. Clark, S. Marussi, A. Doherty, S. M. Shah, J. Schulz, S. Marathe, C. Rau, M. Endrizzi, P. D. Lee, and A. Olivo, Sci. Rep., 12, No. 1: 12136 (2022).
  4. K. Hellbach, E. Beller, A. Schindler, F. Schoeppe, N. Hesse, A. Baumann, R. Schinner, S. Auweter, C. Hauke, M. Radicke, and F. G. Meinel, Investig. Radiol., 53, No. 6: 352 (2018).
  5. S. Muhammad, S. Lee, H. Kim, J. Yoon, D. Jang, J. Yoon, J.-H. Park, and W. S. Yoon, J. Power Sources, 285: 156 (2015).
  6. E. R. Wainwright, S. V. Lakshman, A. F. T. Leong, A. H. Kinsey, J. D. Gibbins, S. Q. Arlington, T. Sun, K. Fezzaa, T. C. Hufnagel, and T. P. Weihs, Combust. Flame, 199: 194 (2019).
  7. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables, 54, No. 2: 181 (1993).
  8. D. Paganin, Coherent X-Ray Optics (Oxford University Press: 2013).
  9. https://www.lammps.org
  10. Z. Liu, Q. Han, Y. Guo, J. Lang, D. Shi, Y. Zhang, Q. Huang, H. Deng, F. Gao, B. Sun, and S. Du, J. Alloy. Compd., 780: 881 (2019).
  11. M. Born and E. Wolf, Principles of Optics (Cambridge University Press: 1999).
  12. A. Olivo and E. Castelli, Riv. Nuovo Cim., 37, No. 9: 467 (2014).