Brazing and Metallization of Zirconia Ceramics with Ni−Cr−Ti Filler to Fabricate Products Operating at High Temperatures

O. V. Durov, T. V. Stetsyuk

I. M. Frantsevych Institute for Problems of Materials Science, N.A.S. of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine

Received: 30.10.2024; final version - 15.11.2024. Download: PDF

Ni−Cr−Ti system is considered as filler for ZrO2-ceramics brazing and metallization because of its high melting temperature. The contact angle near 40° is reached for (Ni−56Cr)−15Ti composition; the adhesion is provided by the formation of an oxidized titanium transition layer on the interface. A method of spreading the nickel–chromium melt on titanium plate is elaborated for metallization and brazing. A mix of metal powders and an infiltration of nickel–chromium melt through titanium powder on ceramics surface or in brazing gap are also used. The method of spreading shows the better results because high-disperse titanium oxidizes with oxygen from zirconia.

Key words: brazing, metallization, zirconia, wetting, infiltration, spreading.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i06/0619.html

DOI: https://doi.org/10.15407/mfint.47.06.0619

PACS: 06.60.Vz, 68.08.Bc, 68.08.De, 68.35.Np, 81.05.Je, 81.20.Vj, 85.40.Ls

Citation: O. V. Durov and T. V. Stetsyuk, Brazing and Metallization of Zirconia Ceramics with Ni−Cr−Ti Filler to Fabricate Products Operating at High Temperatures, Metallofiz. Noveishie Tekhnol., 47, No. 6: 619-625 (2025)


REFERENCES
  1. Y. V. Naidich, V. S. Zhuravlev, I. I. Gab, B. D. Kostyuk, V. P. Krasovskyy, A. A. Adamovskyy, and N. Yu. Taranets, J. Europ. Ceram. Soc., 28: 717 (2008).
  2. S. Mishra, A. Sharma, D. H. Jung, and J. P. Jung, Met. Mater. Int., 26: 1087 (2020).
  3. Y. Zhang, D. Feng, Z.-Y. He, and X.-C. Chen, J. Iron Steel Res. Int., 13: 1 (2006).
  4. H.-P. Xiong, W. Dong, B. Chen, Y.-S. Kang, A. Kawasaki, H. Okamura, and R. Watanabe, Mater. Sci. and Eng.: A, 474, Iss. 1−2: 376 (2008).
  5. A. Koltsov, F. Hodaj, and N. Eustathopoulos, Mater. Sci. and Eng.: A, 495, Iss. 1−2: 259 (2008).
  6. H.-P. Xiong, W. Mao, Y.-H. Xie, W.-L. Guo, X.-H. Li, and Y.-Y. Cheng, Mater. Let., 61, Iss. 25: 4662 (2007).
  7. V. P. Krasovskyy and A. E. Shapiro, J. Superhard Materials, 45, No. 2: 93 (2023).
  8. Collection of Phase Diagrams [Electronic resource]: http://www.crct.polymtl.ca/fact/documentation/FSstel/Cr-Ni.jpg
  9. Ju. V. Naidich, Prog. Surf. Membrane Sci., 14: 353 (1981).
  10. A. V. Durov, Y. V. Naidich, and B. D. Kostyuk, J. Mater. Sci., 40: 2173 (2005).
  11. Y. N. Vilk, V. E. Shvaiko-Shvaikovskii, and V. A. Shvarts, Refractories, 36: 247 (1995).