Modelling of DC-Bias Stable Chokes Based on Nanocrystalline Fe73Si16B7Cu1Nb3 Cores

B. S. Baitaliuk, V. K. Nosenko, O. V. Oliinyk, O. M. Semyrga

G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 16.01.2025; final version - 07.04.2025. Download: PDF

The application of the nanocrystalline Fe73Si16B7Cu1Nb3 alloy for the fabrication of toroidal-core inductors (chokes) operating under DC-bias conditions is investigated. The influence of the Fe73Si16B7Cu1Nb3-alloy properties, particularly, its high magnetic permeability and thermal stability of magnetic properties, on the choke characteristics is studied. A novel calculation method for the dimensions and number of turns of toroidal chokes, considering specified parameters and operating modes, is proposed. This method incorporates the analytical and numerical techniques to determine the optimal core dimensions and number of wire turns, ensuring minimal losses and high choke efficiency. This efficiency manifests itself in reduced energy losses, improved size and weight characteristics, enhanced manufacturability, and ensuring stable choke operation under various operating modes. A software algorithm for automated calculation of choke parameters is developed, enabling rapid and accurate calculations, considering all key parameters such as inductance, operating flux density, and wire cross-section. An analysis of the influence of the number of wire turns and the magnetic permeability of the Fe73Si16B7Cu1Nb3 alloy on the geometrical dimensions, weight, and electro-magnetic losses of the chokes is performed. The proposed method allows for optimizing the choke design, reducing their weight and cost that is crucial for industrial applications, especially, in areas, where compact and efficient inductive components with low losses are required.

Key words: nanocrystalline alloy, inductors/chokes, DC bias, magnetic permeability, toroidal core.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i07/0675.html

DOI: https://doi.org/10.15407/mfint.47.07.0675

PACS: 07.05.Tp, 75.50.Bb, 75.50.Tt, 84.30.Bv, 84.30.Vn, 84.32.Hh, 85.70.Ay

Citation: B. S. Baitaliuk, V. K. Nosenko, O. V. Oliinyk, and O. M. Semyrga, Modelling of DC-Bias Stable Chokes Based on Nanocrystalline Fe73Si16B7Cu1Nb3 Cores, Metallofiz. Noveishie Tekhnol., 47, No. 7: 675-701 (2025)


REFERENCES
  1. X. Zheng, T. Ishimine, S. Yamamoto, T. Tokuoka, S. Ohashi, K. Matsunuma, H. Fujikawa, and T. Hayasaki, SEI Technical Review, 75: 55 (2012).
  2. H. S. Silvus and R. E. White, SAE Transactions, 111: 37 (2002).
  3. C. Sullivan and A. Muetze, IEEE Trans. Ind. Appl., 46, Iss. 2: 884 (2010).
  4. O. Coşkun, R. Eken, Ö. Çevik, and G. Yılmaz, Analog Integr. Circ. Sig. Process., 113: 197 (2022).
  5. V. Gurevich, Electr. Eng. Electromech., 2: 71 (2016).
  6. M. Thian, V. Fusco, and P. Gardner, IEEE TCAS-I, 58, No. 3: 451 (2011).
  7. H. W. Ott, Electromagnetic Compatibility Engineering (Rev. Ed.) (Hoboken, New Jersey: John Wiley & Sons, Inc.: 2009).
  8. A. M. Bamdas and Yu. A. Savinovskiy, Drosseli Fil’trov Radioapparatury [Chokes of Radio Equipment Filters] (Moskva: Sovetskoye Radio: 1962) (in Russian).
  9. V. S. Rudenko, V. Ya. Romashko, and V. V. Tryfoniuk, Promyslova Ehlektronika: Pidruchnyk [Industrial Electronics: Textbook] (Kyiv: Lybid': 1993) (in Ukrainian).
  10. B. S. Baitalyuk, V. A. Maslyuk, S. B. Kotlyar, and Ya. A. Sytnyk, Powder Metall. Met. Ceram., 55: 496 (2016).
  11. Z. Zheng, S. Li, and K. Peng, J. Magn. Magn. Mater., 568: 170423 (2023).
  12. G. E. Fish, Proc. IEEE, 78, No. 6: 947 (1990).
  13. J. L. Ni, F. Duan, S. J. Feng, F. Hu, X. C. Kan, and X. S. Liu, J. Alloys Compd., 897: 163191 (2022).
  14. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials. Second Edition (Hoboken, New Jersey: John Wiley & Sons, Inc.: 2009).
  15. F. Fiorillo, Characterization and Measurement of Magnetic Materials. 1st Edition (Eds. I. D. Mayergoyz) (Academic Press: 2004).
  16. Z. Y. Wu, Z. Jiang, X. A. Fan, L. J. Zhou, W. L. Wang, and K. Xu, J. Alloys Compd., 742: 90 (2018).
  17. G. Ouyang, X. Chen, Y. Liang, C. Macziewski, and J. Cui, J. Magn. Magn. Mater., 481: 234 (2019).
  18. W. Li, Y. Zheng, Y. Kang, A. Masood, Y. Ying, J. Yu, J. Zheng, L. Qiao, J. Li, and S. Che, J. Alloys Compd., 819: 153028 (2020).
  19. D. Azuma, N. Ito, and M. Ohta, J. Magn. Magn. Mater., 501: 166373 (2019).
  20. R. Hasegawa, J. Magn. Magn. Mater., 324, No. 21: 3555 (2012).
  21. S. Lu, M. Wang, and Z. Zhao, J. Non-Cryst. Solids, 616: 122440 (2023).
  22. X. Wang, Z. Lu, C. Lu, G. Li, and D. Li, J. Iron Steel Res. Int., 21, No. 11: 1055 (2014).
  23. C. Chang, J. Guo, Q. Li, S. Zhou, M. Liu, and Y. Dong, J. Alloys Compd., 788: 1177 (2019).
  24. R. Ma and P. Yu, Mater. Res. Bull., 139: 111256 (2021).
  25. H. Shokrollahi and K. Janghorban, J. Mater. Process. Technol., 189, Nos. 1–3: 1 (2007).
  26. K. L. Alvarez, H. A. Baghbaderani, J. M. Martín, N. Burgos, M. Ipatov, Z. Pavlovic, and J. Gonzalez, J. Magn. Magn. Mater., 501: 166457 (2020).
  27. Y. Yoshizawa, S. Fujii, D. H. Ping, M. Ohnuma, and K. Hono, Scr. Mater., 48, No. 7: 863 (2003).
  28. A. Krings, A. Boglietti, A. Cavagnino, and S. Sprague, IEEE Trans. Ind. Electron., 64, No. 3: 2405 (2017).
  29. P. Kollár, Z. Birčáková, J. Füzer, R. Bureš, and M. Fáberová, J. Magn. Magn. Mater., 327: 146 (2013).
  30. L. O. Hultman and A. G. Jack, Proc. of IEEE International Electric Machines and Drives Conference, 2003. IEMDC’03. (Madison, WI, USA: 2003), vol. 1, p. 516.
  31. M. Polak, J. Kvitkovic, P. Mozola, E. Usak, P. N. Barnes, and G. A. Levin, Supercond. Sci. Technol., 20, No. 9: 293 (2007).
  32. M. Lauda, J. Füzer, P. Kollár, M. Strečková, R. Bureš, J. Kováč, M. Baťková, and I. Baťko, J. Magn. Magn. Mater., 411: 12 (2016).
  33. Handbook of Magnetic Materials (Eds. K. H. J. Buschow). Elsevier Science B.V. Vol. 10 (Netherlands: North-Holland: 1997).
  34. V. K. Nosenko, Visnyk Natsionalnoi Akademii Nauk Ukrainy, 4: 68 (2015) (in Ukrainian).
  35. V. V. Maslov, V. K. Nosenko, L. E. Taranenko, and A. P. Brovko, Fiz. Met. Metalloved., 91, No. 5: 47 (2001).
  36. A.-L. Adenot-Engelvin, C. Dudek, F. Bertin, and O. Acher, J. Magn. Magn. Mater., 316: e831 (2007).
  37. M. Manivel Raja, K. Chattopadhyay, B. Majumdar, and A. Narayanasamy, J. Alloys Compd., 297: 199 (2000).
  38. J. A. Moya, J. Alloys Compd., 622: 635 (2015).
  39. N. Shen, Z. Dou, Y. Li, K. Lv, Y. Wu, F. Li, and X. Hui, Mater. Lett., 305: 130759 (2021).
  40. K. Takenaka, A. D. Setyawan, Y. Zhang, P. Sharma, N. Nishiyama, and A. Makino, Mater. Trans., 56, Iss. 3: 372 (2015).
  41. I. I. Leopol’skiy and L. G. Pikalova, Raschyot Transformatorov i Drosseley Maloy Moshchnosti [Calculation of Low-Power Transformers and Chokes] (Moskva–Leningrad: Gosehnergoizdat: 1963) (in Russian).
  42. I. N. Sidorov, V. V. Ukoseyev, and A. A. Khristinin, Malogabaritnyye Transformatory i Drosseli: Spravochnik [Small-Sized Transformers and Chokes: Handbook] (Moskva: Radio i Svyaz’: 1985) (in Russian).
  43. Istochniki Ehlektropitaniya Radioehlektronnoy Apparatury: Spravochnik [Power Sources of Radioelectronic Equipment: Handbook] (Ed. G. S. Nayvelt) (Moskva: Radio i Svyaz’: 1986) (in Russian).
  44. K. B. Mazel’, Vypryamiteli i Stabilizatory Napryazheniya [Rectifiers and Voltage Stabilizers] (Moskva–Leningrad: Gosehnergoizdat: 1951) (in Russian).
  45. A. Ayachit, D. K. Saini, M. K. Kazimierczuk, and A. Reatti, Proc. of IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society (Florence, Italy: 2016), p. 5621–5626.
  46. Wm. T. McLyman, Transformer and Inductor Design Handbook (4th Ed.) (Boca Raton, FL, USA: CRC Press: 2011).
  47. A. E. Da Silva Bento, Toroid Inductor Development for a SIC DC–DC Converter up to 150 kW, Based on Finite Element Method (Lisboa: Instituto Superior De Engenharia De Lisboa: 2015).
  48. L. D. Didukh, Ehlektryka ta Magnetyzm: Pidruchnyk [Electricity and Magnetism: Textbook] (Ternopil: Pidruchnyky i Posibnyky: 2020) (in Ukrainian).
  49. F. Cardarelli, Magnetic Materials. Materials Handbook (Cham: Springer: 2018).
  50. A. Nosenko, T. Mika, O. Rudenko, Y. Yarmoshchuk, and V. Nosenko, Nanoscale Res. Lett., 10: 136 (2015).
  51. W. G. Hurley and W. H. Wölfle, Transformers and Inductors for Power Electronics: Theory, Design and Applications (John Wiley & Sons Ltd: 2013).