Helicon-Arc Ion-Plasma Synthesis of AlN-Based Film Coatings on the Steel 3 and Aluminium Substrates

Е. M. Rudenko, M. V. Dyakin, I. V. Korotash, D. Yu. Polotskiy, V. A. Dekhtyarenko

G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 16.01.2025; final version - 07.04.2025. Download: PDF

Using a hybrid helicon-arc ion-plasma reactor, a coating based on aluminium nitride (AlN) is deposited on the steel 3 and aluminium substrates. Regardless of the substrate, it is found that a coating with a thickness of ≅ 2.0 μm is formed during 30 minutes of deposition; increasing the process time to 45 minutes allows to obtain a coating two and a half times thicker (≅ 5 μm). As determined, the selected deposition time does not allow obtaining a coating of stoichiometric composition of AlN on the substrates used. As a rule, a compound with Al excess is formed. As shown, in cases where a plastic material (for example, aluminium) is used as a substrate, the formation of the coating can only be the last technological operation.

Key words: film coatings, microstructure, stoichiometric composition, aluminium, aluminium nitride.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i07/0703.html

DOI: https://doi.org/10.15407/mfint.47.07.0703

PACS: 52.50.Qt, 61.72.Ff, 65.80.-g, 68.37.Hk, 68.55.J-, 68.60.Dv, 81.15.Gh

Citation: Е. M. Rudenko, M. V. Dyakin, I. V. Korotash, D. Yu. Polotskiy, and V. A. Dekhtyarenko, Helicon-Arc Ion-Plasma Synthesis of AlN-Based Film Coatings on the Steel 3 and Aluminium Substrates, Metallofiz. Noveishie Tekhnol., 47, No. 7: 703-715 (2025)


REFERENCES
  1. V. A. Dekhtyarenko, T. V. Pryadko, О. І. Boshko, V. V. Kirilchuk, H. Yu. Mykhailova, and V. I. Bondarchuk, Progr. Phys. Met., 25, No. 2: 276 (2024).
  2. Q. Xu and J. Zhang, Sci. Rep., 7: 16927 (2017).
  3. T. V. Pryadko, V. A. Dekhtyarenko, and A. A. Shkola, Mater. Sci., 56: 75 (2020).
  4. T. V. Pryadko, V. A. Dekhtyarenko, V. I. Bondarchuk, M. A. Vasilyev, and S. M. Voloshko, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1419 (2020).
  5. О. М. Ivasyshyn, D. H. Savvakin, V. А. Dekhtyarenko, and О. О. Stasyuk, Mater. Sci., 54: 266 (2018).
  6. D. I. Cherkez, A. V. Spitsyn, A. V. Golubeva, O. I. Obrezkov, S. S. Ananyev, N. P. Bobyr, and V. M. Chernov, Phys. Atom. Nuclei, 82: 1010 (2019).
  7. M. Wetegrove, M. J. Duarte, K. Taube, M. Rohloff, H. Gopalan, C. Scheu, G. Dehm, and A. Kruth, Hydrogen, 4, Nо. 2: 307 (2023).
  8. N.-E. Laadel, M. El. Mansori, N. Kang, S. Marlin, and Y. Boussant-Roux, Int. J. Hydrogen Energy, 47: 37707 (2022).
  9. R. G. Song, Surf. Coat. Technol., 168: 191 (2003).
  10. Y. Su, L. Wang, L. Luo, X. Jiang, and H. Fu, Int. J. Hydrogen Energy, 34: 8958 (2009).
  11. T. Nieminen, T. Koskinen, V. Kornienko, G. Ross, and M. Paulasto-Kröckel, ACS Appl. Electron. Mater., 6, No. 4: 2413 (2024).
  12. O. Ye. Pogorelov, O. V. Filatov, E. M. Rudenko, I. V. Korotash, and M. V. Dyakin, Progr. Phys. Met., 24, No. 2: 239 (2023).
  13. E. Rudenko, Z. Tsybrii, F. Sizov, I. Korotash, D. Polotskiy, M. Skoryk, M. Vuichyk, and K. Svezhentsova, J. Appl. Phys., 121, Nо. 13: 135304 (2017).
  14. R. Rachbauer, J. J. Gengler, A. A. Voevodin, K. Resch, and P. H. Mayrhofer, Acta Mater., 60: 2091 (2012).
  15. J. T. Gaskins, P. E. Hopkins, D. R. Merrill, S. R. Bauers, E. Hadland, D. C. Johnson, D. Koh, J. H. Yum, S. Banerjee, B. J. Nordell, M. M. Paquette, A. N. Caruso, W. A. Lanford, P. Henry, L. Ross, H. Li, L. Li, M. French, A. M. Rudolph, and S. W. King, ECS J. Solid State Sci. Technol., 6: 189 (2017).
  16. A. W. Weimer, G. A. Cochran, G. A. Eisman, J. P. Henley, B. D. Hook, L. K. Mills, T. A. Guiton, A. K. Knudsen, N. R. Nicholas, J. E. Volmering, and W. G. Moore, J. Am. Ceram. Soc., 77: 3 (1994).
  17. V. M. Uvarov, E. M. Rudenko, Yu. V. Kudryavtsev, M. V. Uvarov, I. V. Korotash, and M. V. Dyakin, Metallofiz. Noveishie Tekhnol., 46, No. 3: 199 (2024).
  18. A. Jacquot, B. Lenoir, A. Dauscher, P. Verardi, F. Craciun, M. Stölzer, M. Gartner, and M. Dinescu, Appl. Surf. Sci., 186: 507 (2002).
  19. E. M. Rudenko, A. O. Krakovnyy, M. V. Dyakin, I. V. Korotash, D. Yu. Polots’kyy, and M. A. Skoryk, Metallofiz. Noveishie Tekhnol., 44, No. 8: 989 (2022) (in Ukrainian).
  20. R. L. Xu, M. M. Rojo, S. M. Islam, A. Sood, B. Vareskic, A. Katre, N. Mingo, K. E. Goodson, H. G. Xing, D. Jena, and E. Pop, J. Appl. Phys., 126: 185105 (2019).
  21. C. Perez, A. J. McLeod, M. E. Chen, Su-In Yi, S. Vaziri, R. Hood, S. T. Ueda, X. Bao, M. Asheghi, W. Park, A. A. Talin, S. Kumar, E. Pop, A. C. Kummel, and K. E. Goodson, ACS Nano, 17, No.21: 21240 (2023).
  22. F. Sizov, Z. Tsybrii, E. Rudenko, I. Korotash, M. Vuichyk, K. Svezhentsova, and D. Polotskiy, Vacuum, 225: 113248 (2024).
  23. G. R. Kline and K. M. Lakin, Appl. Phys. Lett., 43: 750 (1983).
  24. I. Kogut, C. Hartmann, I. Gamov, Y. Suhak, M. Schulz, S. Schröder, J. Wollweber, A. Dittmar, K. Irmscher, T. Straubinger, M. Bickermann, and H. Fritze, Solid State Ionics, 343: 115072 (2019).
  25. A. L. Hickman, R. Chaudhuri, S. J. Bader, K. Nomoto, L. Li, J. C. M. Hwang, H. G. Xing, and D. Jena, Semicond. Sci. Technol., 36: 044001 (2021).
  26. D. Oryshych, V. Dekhtyarenko, T. Pryadko, V. Bondarchuk, and D. Polotskiy, Machines Technologies Materials, 13, No.12: 561 (2019).
  27. Z. Tsybrii, F. Sizov, M. Vuichyk, I. Korotash, and E. Rudenko, Infrared Phys. Technol., 107: 103323 (2020).
  28. A. Shpak, E. Rudenko, I. Korotash, V. Semenyuk, V. Odinokov, G. Pavlov, and V. Sologub, Nanoindustriya [Nanoindustry], 4: 12 (2009) (in Russian).
  29. V. F. Semenyuk, V. F. Virko, I. V. Korotash, L. S. Osipov, D. Yu. Polotsky, E. M. Rudenko, V. M. Slobodyan, and K. P. Shamrai, Problems Atomic Science and Technology, 4: 179 (2013).
  30. V. F. Semenyuk, E. M. Rudenko, I. V. Korotash, L. S. Osipov, D. Yu. Polotskiy, K. P. Shamray, V. V. Odinokov, G. Ya. Pavlov, V. A. Sologub, Metallofiz. Noveishie Tekhnol., 33, No. 2: 223 (2013) (in Russian).
  31. E. M. Rudenko, V. Ye. Panarin, P. O. Kyrychok, M. Ye. Svavilnyi, I. V. Korotash, O. O. Palyukh, D. Yu. Polotskyi, and R. L. Trishchuk, Progr. Phys. Met., 20, No. 3: 485 (2019).
  32. G. E. Totten and D. S. Mackenzie, Handbook of Aluminum: Physical Metallurgy and Processes (CRC Press: 2003).
  33. T. Mattila and R. M. Nieminen, Phys. Rev. B, 54, No.23: 16676 (1996).
  34. O. Elmazria, M. B. Assouar, P. Renard, and P. Alnot, Phys. Status Solidi A, 196, No.2: 416 (2003).
  35. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, T. G. Yugova, K. D. Scherbatchev, O. A. Avdeev, T. Yu. Chemekova, E. N. Mokhov, S. S. Nagalyuk, H. Helava, and Yu. N. Makarov, Physica B, 404: 4939 (2009).
  36. H.-K. Lee, H. M. Lee, and D. K. Kim, J. Am. Ceram. Soc., 97, No. 3: 805 (2014).