Ti-Based Metal-Matrix Composites Reinforced with TiC or TiB Particles Obtained by Electron-Beam 3D Printing Using a Cored Wire

D. V. Kovalchuk$^{1,2}$, V. I. Nevmerzhytsky$^{1,2}$, V. P. Tkachuk$^{1,2}$, S. V. Akhonin$^{3}$, S. L. Schwab$^{3}$, D. G. Savvakin$^{1}$, D. V. Vedel$^{1,4}$, O. O. Stasiuk$^{1}$, D. V. Oryshych$^{1}$, P. E. Markovsky$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$JSC ‘NVO Chervona Hvylia’, 28 Dubrovytska Str., UA-04114 Kyiv, Ukraine
$^{3}$E. O. Paton Electric Welding Institute, N.A.S. of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine
$^{4}$I. M. Frantsevich Institute for Problems in Materials Science, N.A.S. of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine

Received: 11.03.2025; final version - 02.07.2025. Download: PDF

A metal-matrix composites (MMCs) based on titanium matrix reinforced with the TiB and TiC particles are obtained by printing with electron-beam melting and cored wires as feeding deposited material. These wires of three types are made of a mixture of fine powders of pure Ti with fine powders of (1) TiC, (2) TiB2, or (3) Ti/TiB (obtained by preliminary sintering) wrapped into 100 μm-thick titanium foil. MMCs are formed due to the in situ reaction between Ti and fine hard particles during the deposition on the surface of the base Ti–6Al–4V plate. Upon printing, the gradients in both the composition and the microstructure state of the MMCs are formed. The bottom layer adjacent to the base Ti–6Al–4V plate has relatively-low concentrations of the TiC or TiB particles, while approaching the top surface, the concentration of hardening particles increases. This gradient microstructure ensures a smooth change in hardness along the height of the MMC layer, and its maximum reaches 525–540 HV in the cases of wires (1) and (2), while for wire (3), which has most uniform distribution of finest strengthening particles, it is up to 640 HV.

Key words: titanium-matrix composite, printing with electron beam, cored wire, interphase interaction, microstructure, phase composition, titanium carbide, titanium boride.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i08/0875.html

DOI: https://doi.org/10.15407/mfint.47.08.0875

PACS: 06.60.Vz, 61.72.Ff, 81.05.Bx, 81.05.Ni, 81.20.Ev, 81.40.-z, 81.70.-q

Citation: D. V. Kovalchuk, V. I. Nevmerzhytsky, V. P. Tkachuk, S. V. Akhonin, S. L. Schwab, D. G. Savvakin, D. V. Vedel, O. O. Stasiuk, D. V. Oryshych, and P. E. Markovsky, Ti-Based Metal-Matrix Composites Reinforced with TiC or TiB Particles Obtained by Electron-Beam 3D Printing Using a Cored Wire, Metallofiz. Noveishie Tekhnol., 47, No. 8: 875–889 (2025)


REFERENCES
  1. G. Rasiya, A. Shukla, and K. Saran, Mater. Today: Proc., 47: 19 (2021).
  2. L. Zhou, J. Miller, J. Vezza, M. Mayster, M. Raffay, Q. Justice, Z. Al Tamimi, G. Hansotte, L. D. Sunkara, and J. Bernat, Sensors, 24: 9 (2024).
  3. O. Ivasishin and D. Kovalchuk, Additive Manufacturing for the Aerospace Industry (Elsevier: 2019), ch. 12.
  4. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, J. Mater. Eng. Perf., 30: 5307 (2021).
  5. P. E. Markovsky, D. V. Kovalchuk, S. V. Akhonin, S. L. Shwab, D. G. Savvakin, O. O. Stasiuk, D. V. Oryshych, D. V. Vedel, M. A. Skoryk, and V. P. Tkachuk, Progress in Physics of Metals, 24, No. 4: 715 (2023).
  6. S. Schwab, R. Selin, and M. Voron, Welding in the World, 67: 981 (2023).
  7. S. Akhonin, V. Nesterenkov, V. Pashynskyi, V. Matviichuk, S. Motrunich, V. Berezos, and I. Klochkov, Eastern-European J. Enterprise Technol., 3, No. 12: 36 (2024).
  8. P. E. Markovsky, D. V. Kovalchuk, J. Janiszewski, B. Fikus, D. G. Savvakin, O. O. Stasiuk, D. V. Oryshych, M. A. Skoryk, V. I. Nevmerzhytskyi, and V. I. Bondarchuk, Progress in Physics of Metals, 24, No. 4: 741 (2023).
  9. D. Kovalchuk, V. Melnyk, I. Melnyk, and B. Tugai, Elektrotechnica & Elektronica (E+E), 51, Iss. 5–6: 36 (2016).
  10. D. V. Kovalchuk, V. I. Melnik, I. V. Melnik, and B. A. Tugai, Automatic Welding, No. 12: 26 (2017).
  11. D. Kovalchuk, V. Melnyk, I. Melnyk, and B. Tugai, Elektrotechnica & Elektronica (E+E), 53, Iss. 3–4: 60 (2018).
  12. H. Okamoto, J. Phase Equilibria, 19: 89 (1998).