Structure and Properties of Plasma–Electrolytic-Oxidation Coatings Obtained on Д16Т Alloy under Different Electrical Parameters and Prior Ultrasonic Impact Treatment

B. M. Mordyuk$^{1}$, L. Ya. Rop’yak$^{2}$, V. S. Vytvyts’kyy$^{2}$, N. O. Piskun$^{1}$, V. Yu. Malinin$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Str., UA-76019 Ivano-Frankivsk, Ukraine

Received: 18.08.2025; final version - 19.08.2025. Download: PDF

The surface of the aluminium Д16Т alloy is modified using plasma–electrolytic oxidation (PEO) at different current densities і and electrolyte-flow rates v. Taking the maximum microhardness and minimum wear of the PEO coating into account, the optimal process parameters are determined (і = 4 A/dm2 and v = 80 cm/s). With these parameters, a combined surface treatment of the Д16Т alloy is carried out with preliminary ultrasonic impact treatment (UIT) and finishing PEO. The total porosity, pore size, and their distribution over the thickness of the PEO coatings are investigated using the scanning electron microscopy method, depending on the applied current densities, electrolyte feed rates, and UIT. As shown, the increase in microhardness HV (≅ 22 GPa) and the decrease in wear W (≅ 0.18 g) of the UIT + PEO coating amount to ≅ 3–5% as compared to those for the PEO coating produced without UIT. This is associated with a decrease in the porosity of the coating-surface layer of 40 μm thick (by 3.5 times) and the layer near the interface between the coating and the Д16Т-alloy specimen surface (by 4.5 times), as well as a decrease in the size and more uniform arrangement of pores.

Key words: plasma–electrolytic oxidation, ultrasonic impact treatment, coating, porosity, microhardness, wear.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i09/0989.html

DOI: https://doi.org/10.15407/mfint.47.09.0989

PACS: 52.77.Dq, 61.43.Gt, 62.20.Qp, 81.15.Pq, 81.16.Pr, 81.40.Pq, 82.45.Xy

Citation: B. M. Mordyuk, L. Ya. Rop’yak, V. S. Vytvyts’kyy, N. O. Piskun, and V. Yu. Malinin, Structure and Properties of Plasma–Electrolytic-Oxidation Coatings Obtained on Д16Т Alloy under Different Electrical Parameters and Prior Ultrasonic Impact Treatment, Metallofiz. Noveishie Tekhnol., 47, No. 9: 989–1002 (2025) (in Ukrainian)


REFERENCES
  1. N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, Progress Mater. Sci., 106: 100578 (2019).
  2. R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara, and A. K. Mukherjee, Scripta Mater., 42: 163 (2000).
  3. Y. K. Gao, Mater. Sci. Eng. A, 528: 3823 (2011).
  4. B. N. Mordyuk and G. I. Prokopenko, Handbook of Mechanical Nanostructuring (Ed. M. Aliofkhazraei) (Wiley: 2015), p. 417.
  5. M. O. Vasyl’yev, B. M. Mordyuk, S. I. Sydorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 39, No. 4: 49 (2017) (in Ukrainian).
  6. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Eng., 34, Iss. 4: 324 (2018).
  7. B. N. Mordyuk, V. V. Silberschmidt, G. I. Prokopenko, Y. V. Nesterenko, and M. O. Iefimov, Mater. Characterization, 61: 1126 (2010).
  8. R. S. Mishra, Z. Y. Ma, and I. Charit, Mater. Sci. Eng. A, 341: 307 (2003).
  9. R. L. Deuis, C. Subramanian, and J. M. Yellup, Compos. Sci. Technol., 57: 415 (1997).
  10. M. O. Vasyl’yev, B. M. Mordyuk, S. I. Sydorenko, S. M. Voloshko, A. P. Burmak, and M. V. Kindrachuk, Metallofiz. Noveishie Tekhnol., 38, No. 4: 545 (2016) (in Ukrainian).
  11. B. N. Mordyuk, M. O. Iefimov, K. E. Grinkevich, M. I. Danylenko, and A. V. Samelyuk, Surf. Coat. Technol., 205: 5278 (2011).
  12. B. N. Mordyuk, M. O. Iefimov, G. I. Prokopenko, T. V. Golub, and M. I. Danylenko, Surf. Coat. Technol., 204: 1590 (2010).
  13. A. Berardi, M. Gamba, L. Paterlini, F. Ceriani, and M. Ormellese, Coatings, 15: 653 (2025).
  14. F. Careri, A. Sergi, P. Shashkov, R. H. U. Khan, and M. M. Attallah, Surf. Coat. Technol., 489: 131122 (2024).
  15. L. Ya. Rop’yak, I. P. Shats’kyy, and M. V. Makoviychuk, Metallofiz. Noveishie Tekhnol., 39, No. 4: 517 (2017) (in Ukrainian).
  16. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, I. O. Kruhlov, and V. I. Zakiev, Surf. Coat. Technol., 361: 413 (2019).
  17. C. Wang, Z. Li, M. O. Iefimov, and B. N. Mordyuk, Surf. Eng., 23, Iss. 5: 532 (2023).
  18. M. O. Iefimov, B. N. Mordyuk, S. I. Chugunova, I. V. Goncharova, T. Haoliang, C. L. Wang, C. G. Zhu, and L. Zhang, J. Mater. Eng. Perform., 32: 10371 (2023).
  19. L. Y. Ropyak, A. S. Velychkovych, V. S. Vytvytskyi, and M. V. Shovkoplias, J. Phys.: Conf. Series, 1741: 012039 (2021).
  20. I. P. Shatskii, J. Appl. Mech. Tech. Phys., 30: 828 (1989).
  21. I. P. Shats’kyi, M. V. Makoviichuk, and A. B. Shcherbii, J. Math. Sci., 238: 165 (2019).
  22. M. V. Makoviychuk, I. P. Shats’kyy, and A. B. Shcherbiy, Bulletin of Taras Shevchenko National University of Kyiv. Phys. Math. Sci., 2021, No. 3: 67 (2021) (in Ukrainian).
  23. L. Ropyak, T. Shihab, A. Velychkovych, O. Dubei, T. Tutko, and V. Bilinskyi, Progress in Physics of Metals, 24, No. 2: 319 (2023).
  24. M. M. Student, I. B. Ivasenko, V. M. Posuvailo, H. H. Veselivs’ka, A. Y. Pokhmurs’kyi, Y. Y. Sirak, and V. M. Yus’kiv. Mater. Sci., 54: 899 (2019).
  25. L. Ropyak, T. Shihab, A. Velychkovych, V. Bilinskyi, V. Malinin, and M. Romaniv, Ceramics, 6, Iss. 1: 146 (2023).
  26. X. Xu, W. Jia, T. Yin, Q. Dong, Y. Ma, Z. Wang, Z. L. Zhao, and P. X. Lv, Sci. Rep., 15: 8044 (2025).
  27. M. Kaseem, S. Fatimah, N. Nashrah, and Y. G. Ko, Prog. Mater. Sci., 117: 100735 (2021).
  28. S. A. Yavari, B. S. Necula, L. E. Fratila-Apachitei, J. Duszczyk, and I. Apachitei, Surf. Eng., 32, Iss. 6: 411 (2016).
  29. B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, and V. V. Mohylko, J. Mater. Eng. Perform., 30: 1780 (2021).
  30. B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, M. A. Skoryk, V. V. Mohylko, N. I. Khripta, V. Y. Malinin, and D. A. Lesyk, J. Mater. Eng. Perform., 34: 11515 (2025).
  31. D. T. Asquith, A. L. Yerokhin, J. R. Yates, and A. Matthews, Thin Solid Films, 515: 1187 (2006).
  32. Z. Y. Ye, D. X. Liu, X. H. Zhang, Z. Y. Wu, and F. Long, Appl. Surf. Sci., 486: 72 (2019).
  33. B. N. Mordyuk, G. I. Prokopenko, Y. V. Milman, M. O. Iefimov, and A. V. Sameljuk, Mater. Sci. Eng. A, 563: 138 (2013).
  34. https://www.splav-kharkov.com/mat_start.php?name_id=1438
  35. S. P. Chenakin, B. M. Mordyuk, N. I. Khripta, and V. Y. Malinin, Metallofiz. Noveishie Tekhnol., 45, No. 9: 1109 (2023).
  36. Z. H. Melgarejo, O. M. Suárez, and K. Sridharan, Scripta Mater., 55, Iss. 1: 95 (2006).
  37. P. Fernández-López, S. A. Alves, J. T. San-Jose, E. Gutierrez-Berasategui, and R. Bayón, Coatings, 14: 217 (2024).
  38. L. Zhu, Z. Guo, Y. Zhang, Z. Li, and M. Sui, Electrochim. Acta, 208: 296 (2016).
  39. N. Yaakop, Plasma Electrolytic Oxidation of Aluminium for Power Electronics Applications (Manchester: The University of Manchester: 2018).
  40. F. Monfort, E. Matykina, A. Berkani, P. Skeldon, G. E. Thompson, H. Habazaki, and K. Shimizu, Surf. Coat. Technol., 201: 8671 (2007).