Pulsed Glow Discharge Plasma Nitriding of Commercially Pure Titanium BT1-0

G. P. Bolotov$^{1}$, O. V. Filatov$^{2,3}$, M. G. Bolotov$^{1}$, O. O. Novomlynets$^{1}$

$^{1}$Chernihiv Polytechnic National University, 95 Shevchenko Str.,UA-14035 Chernihiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Beresteiskyi Ave., UA-03056 Kyiv, Ukraine

Received: 10.01.2025; final version - 07.04.2025. Download: PDF

Surface hardening of commercially pure titanium VT1-0 (Grade 2) by plasma nitriding within the DC glow discharge initiated in the pulsed and stationary modes is investigated. The experiments are carried out in pure nitrogen at a pressure in the reactor of 150 Pa and temperature of 450°C and 550°C with the treatment-duration changes from 3 to 9 hours. In these plasma-nitriding conditions, a pulsed glow discharge provides a more hardening effect with the hardness of the surface layer, which is by 15–25% higher than that obtained in a steady glow discharge and by 2–5 times higher than reference sample. As revealed, an increase in duty cycle from 40 to 80% at a pulse train frequency of 1 kHz during pulsed glow discharge plasma nitriding leads to an increase in the microhardness of a titanium surface by 25–30%.

Key words: plasma nitriding, commercially pure titanium, abnormal DC glow discharge, pulsed glow discharge, surface modification.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i09/1003.html

DOI: https://doi.org/10.15407/mfint.47.09.1003

PACS: 52.50.-b, 52.77.-j, 52.80.Hc, 52.80.Vp, 62.20.Qp, 66.30.je, 81.65.Lp

Citation: G. P. Bolotov, O. V. Filatov, M. G. Bolotov, and O. O. Novomlynets, Pulsed Glow Discharge Plasma Nitriding of Commercially Pure Titanium BT1-0, Metallofiz. Noveishie Tekhnol., 47, No. 9: 1003–1015 (2025)


REFERENCES
  1. Arr. Edrisy and K. Farokhzadeh, Progress in Physical States and Chemical Reactions (InTech: Apr. 20, 2016).
  2. R. Sitek, J. Kamiński, and B. Adamczyk-Cieślak, Metallogr. Microstruct. Anal., 11: 852–863 (2022).
  3. M. Bolotov, G. Bolotov, S. Stepenko, and P. Ihnatenko, Appl. Sci., 11, No. 4: 1765 (2021).
  4. G. P. Bolotov and M. G. Bolotov, Proc. of 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO) (Kyiv, Ukraine, 2017), p. 365.
  5. M. G. Bolotov and G. P. Bolotov, Proc. of 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (Kyiv, Ukraine, 2019), p. 578.
  6. M. G. Bolotov and G. P. Bolotov, Proc. of 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON) (Lviv, Ukraine, 2019), p. 497.
  7. V. Efimova, V. Hoffmann, and J. Eckert, Anal. At. Spectrom., 26: 784 (2011).
  8. M. G. Bolotov, G. P. Bolotov, and M. M. Rudenko, Progr. Phys. Met., 25, No. 1: 74 (2024).
  9. H. Yilmazer, S.Yilmaz, and M. E. Acma, Defect and Diffusion Forum, 283–286: 401 (2008).
  10. A. S. Darmawan, P. I. Purboputro, B. Sugito, B. W. Febriantoko, and T. Sujitno, AIP Conf. Proc., 2727, Iss. 1: 030002 (2023).
  11. M. Pilarska and T. Frączek, Journal of Achievements in Materials and Manufacturing Engineering, 85, No. 1: 21 (2017).
  12. T. Frączek, M. Olejnik, and A. Tokarz, Metalurgija, 48, No. 2: 83 (2009).
  13. M. Naeem and M. Waqas, Surf. and Coat. Technol., 300: 67 (2016).
  14. C. Alves, J. Rodrigues, and A. E Martinelli, Surf. and Coat. Technol., 122, Iss. 2–3: 112 (1999).
  15. K. Szymkiewicz, J. Morgiel, Ł. Maj, M. Pomorska, M. Tarnowski, O. Tkachuk, I. Pohrelyuk, and T. Wierzchon, J. Alloys Compd., 845: 156320 (2020).
  16. O. Gul, N.Y. Sari, and T. Sinmazcelik, Acta Phys. Pol., 125, No. 2: 491 (2014).
  17. J. R. Deepak, V. K. Bupesh Raja, J. S. Kumar, S. Thomas, and T. R. Vithaiyathil, IOP Conference Series: Materials Science and Engineering, 197: 012065 (2017).
  18. J. Morgiel, Ł. Maj, K. Szymkiewicz, M. Pomorska, P. Ozga, D. Toboła, M. Tarnowski, and T. Wierzchoń, Appl. Surf. Sci., 574: 151639 (2022).
  19. W. D. Davis and T. A. Vanderslice, Phys. Rev., 131: 219 (1963).
  20. G. Miram, L. Ives, M. Read, R. Wilcox, M. Cattelino, and B. Stockwell, Proc. of Fifth IEEE International Vacuum Electronics Conference (IEEE Cat. No.04EX786) (Monterey, CA, USA, 2004), p. 303.