Research on the Properties of Multilayer Nitride CrN/NbN Coatings Using Acoustic Emission Parameters. Pt. 2. Multilayer CrN/NbN Coatings with Bilayer Thickness of 67 nm

I. V. Serdyuk$^{1}$, S. I. Petrushenko$^{2,3}$, V. O. Stolbovyy$^{1,4}$, M. Fialkowsky$^{3}$

$^{1}$National Science Centre ‘Kharkiv Institute of Physics and Technology’, N.A.S. of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine
$^{2}$V. N. Karazin Kharkiv National University, 4 Svobody Sqr., UA-61022 Kharkiv, Ukraine
$^{3}$Technical University of Liberec, Studentska 1402/2, 46117 Liberec 1, Czech Republic
$^{4}$Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., UA-61002 Kharkiv, Ukraine

Received: 27.05.2025; final version - 10.10.2025. Download: PDF

The investigation of the properties of the vacuum-arc multilayer nitride CrN/NbN coatings with 270 layers and bilayer thickness of 67 nm is performed using a method of acoustic emission. The investigation is conducted using scratch testing and microscopic visual observation of scratches. Methods for statistical data analysis of acoustic emission are applied for comparing the properties of multilayer CrN/NbN coatings obtained at different technological parameters of deposition (the constant negative voltage on the substrate of 70−200 V and the nitrogen pressure in vacuum chamber of 0.08−0.27 Pa). Several parameters of acoustic emission (the maximum pulse amplitude, the average value, the median value, the mode value, the number of pulses, and the amplitude sum of all acoustic-emission pulses) are calculated for each coating. The studied parameters are calculated on four scratches for each multilayer coating. The influence of deposition technological parameters on the structure deformation processes of multilayer CrN/NbN coatings with 270 layers and bilayer thickness of 67 nm occurred during scratch testing is determined.

Key words: multilayer coatings, cathodic arc evaporation, acoustic emission, deformation, methods for statistical data analysis, coating embrittlement.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i10/1043.html

DOI: https://doi.org/10.15407/mfint.47.10.1043

PACS: 43.35.Zc, 43.40.Le, 68.35.Iv, 68.60.Bs, 68.65.Ac, 81.15.-z, 81.70.Cv

Citation: I. V. Serdyuk, S. I. Petrushenko, V. O. Stolbovyy, and M. Fialkowsky, Research on the Properties of Multilayer Nitride CrN/NbN Coatings Using Acoustic Emission Parameters. Pt. 2. Multilayer CrN/NbN Coatings with Bilayer Thickness of 67 nm, Metallofiz. Noveishie Tekhnol., 47, No. 10: 1043–1059 (2025)


REFERENCES
  1. A. E. Lord and W. Mason, Phys. Acoustic, 11: 289 (1975).
  2. M. V. Kravtsov, O. V. Lyashenko, and A. P. Onanko, Funct. Mater., 11, No. 2: 353 (2004).
  3. O. V. Lyashenko and V. P. Veleshchuk, Ukr. J. Phys., 48, No. 9: 981 (2003) (in Ukrainian).
  4. O. V. Gusev, Akusticheskaya Emissiya pri Deformatsii Monokristallov Tugoplavkikh Metallov [Acoustic Emission During Deformation of Single Crystals of Refractory Metals] (Moskva: Nauka: 1982).
  5. O. I. Vlasenko, M. P. Kyseliuk, V. P. Veleshchuk, Z. K. Vlasenko, I. O. Lyashenko, and O. V. Lyashenko, Optoelectronics and Semiconductor Technique, 49: 5 (2014) (in Ukrainian).
  6. V. M. Perga, Novi Metody Doslidzhennya Fizychnykh Vlastyvostei Tverdykh Til. Akustychna Emisiya. Chastyny 1 i 2 [New Methods of Studying the Physical Properties of Solid Bodies. Acoustic Emission. Parts 1 and 2] (Kyiv: 1991).
  7. V. P. Babak and S. F. Filonenko, Advances in Aerospace Technology, 1, No. 1: 54 (1998) (in Ukrainian).
  8. V. I. Artiukhov, K. B. Vakar, and V. I. Makarov, Akusticheskaya Emissiya i Yeyo Primenenie dlya Nerazrushayushchego Kontrolya v Yadernoi Ehnergetike [Acoustic Emission and its Application for Non-Destructive Testing in Nuclear] (Moskva: Atomizdat: 1980).
  9. V. A. Kalitenko, V. M. Perga, and I. N. Salivonov, Phys. Solid State, 22, No. 6: 1838 (1980).
  10. DSTU 2374-94, Rozrakhunky na Mitsnist ta Vyprobuvannya Tekhnichnykh Vyrobiv. Akustychna Emisiya [Strength Calculations and Testing of Technical Products. Acoustic Emission] (Kyiv: Derzhstandart Ukrainy: 1994) (in Ukrainian).
  11. A. Yu. Vinogradov and D. L. Merson, Low Temp. Phys., 44, No. 9: 1186 (2018).
  12. A. M. Leskovskyi and Sh. Sh. Azimov, Tech. Phys. Lett., 10, No. 5: 307 (1997).
  13. G. I. Prokopenko, T. V. Golub, O. N. Kashevskaia, B. N. Mordyuk, N. A. Efymov, and V. G. Bezkorovainyi, Metallofiz. Noveishie Tekhnol., 28, No. 2: 151 (2006).
  14. L. V. Tikhonov and G. I. Prokopenko, Tech. Diagnostics and Non-Destructive Testing, 8: 73 (1991).
  15. P. I. Stoev, I. I. Papirov, and V. I. Moschenok, Probl. Atom. Sci. Tech., 1: 15 (2006).
  16. V. A. Kalitenko, I. Ya. Kucherov, V. M. Perga, and V. A. Tkhoryk, Phys. Solid State, 30, No. 12: 3677 (1988).
  17. B. Polyzos, E. Douka, and A. Trochidis, J. Appl. Phys., 89: 2124 (2001).
  18. A. Sendrowicz, A. O. Myhre, A. V. Danyuk, and A. Vinogradov, Mater. Sci. Eng. A, 856: 143969 (2022).
  19. A. M. Kosevich and V. S. Boyko, Physics-Uspekhi, 104: 201 (1971).
  20. A. M. Kosevich, Ukr. J. Phys., 84: 579 (1964).
  21. J. D. Eshelby, Proc. Roy. Soc., 260: 222 (1962).
  22. A. Trochidis and B. Polyzos, J. Mech. Phys. Solids, 42: 1933 (1994).
  23. D. G. Eitzen and H. N. G. Wadley, J. Res. Natl. Bur. Stand., 89: 75 (1984).
  24. N. Kiesewetter and P. Schiller, Scr. Met., 8: 249 (1974).
  25. A. Trochidis and B. Polyzos, J. Appl. Phys., 78: 170 (1995).
  26. A. M. Kosevich, Zh. Eksp. Teor. Fiz, 42: 152 (1962).
  27. V. R. Skalskyi, Yu. Ya. Matviiv, and O. G. Simakovych, Physicochemical Mechanicals of Materials, 48, No. 6: 76 (2012).
  28. Yu. B. Drobot and V. V. Korchevsky, Flaw Detection, 6: 38 (1985).
  29. R. M. Fisher and L. S. Lally, Canad. J. Phys., 45: 1147 (1967).
  30. J. R. Frederick and D. K. Felbeck, Acoustic Emission (Baltimore: ASTM STP: 1972).
  31. T. Imanaka and K. Sano, Crystal Lattice Defects, 4: 57 (1973).
  32. V. S. Boyko, V. F. Kivshik, and L. F. Krivenko, Zh. Eksp. Teor. Fiz, 78: 797 (1980).
  33. C. B. Scruby and H. N. G. Wadley, Met. Science, 15: 599 (1981).
  34. D. Rouby and P. Fleischmann, Internal Friction and Ultrasonic Attenuation Solids (1977), p. 811.
  35. D. R. James and S. N. Carpenter, J. Appl. Phys., 42: 4685 (1971).
  36. F. P. Higgins and S. N. Carpenter, Acta Metallurg., 26: 133 (1978).
  37. N. H. Faisal, R. Ahmed, and R. L. Reuben, Int. Mat. Rev., 56, No. 2: 98 (2011).
  38. S. Yamamoto and H. Ichimura, J. Mater. Res., 7: 2240 (1992).
  39. R. K. Choudhary and P. Mishra, J. of Mater. Eng. and Perform., 25: 2454 (2016).
  40. M. A. Hassan, A. R. Bushroa, and Reza Mahmoodian, Surf. Coat. Tech., 277: 216 (2015).
  41. Kaoru Ikenaga, Akira Yanagida, and Akira Azushima, J. of Solid Mechanics and Materials Engineering, 3, No. 2: 347 (2009).
  42. J. Tomastik, R. Ctvrtlik, P. Bohac, M. Drab, V. Koula, K. Cvrk, and L. Jastrabik, Key Eng. Mater., 662: 119 (2015).
  43. B. Warcholiński, A. Gilewicz, Z. Kukliński, and P. Myśliński, Vacuum, 83, No. 4: 715 (2008).
  44. Nicholas X. Randall, Surf. Coat. Tech., 380: 125092 (2019).
  45. J. Tomastik, R. Ctvrtlik, M. Drab, and J. Manak, Coatings, 8, No. 5: 196 (2018).
  46. E. Hamzah, M. Ali, and M. R. HJ. Mohd Toff, Surf. Rev. Lett., 13, No. 6: 763 (2006).
  47. H. Jensen, U. M. Jensen, and G. Sorensen, Surf. Coat. Tech., 74−75: 297 (1995).
  48. P. Drobný, D. Mercier, V. Koula, S. I. Škrobáková, L. Čaplovič, and M. Sahul, Coatings, 11, No. 8: 919 (2021).
  49. Tian-Shun Dong, Ran Wang, Guo-Lu Li, and Liu Ming, High Temp. Mater. Proc., 38: 601 (2019).
  50. T. Z. Kattamis, F. Chang, and M. Levy, Surf. Coat. Tech., 43−44, No. 1: 390 (1990).
  51. I. V. Serdiuk, S. I. Petrushenko, V. O. Stolbovyi, and M. Fijalkowski, Metallofiz. Noveishie Tekhnol., 46, No. 1: 23 (2024).
  52. V. P. Rudenko, V. O. Stolbovoy, I. V. Serdiuk, and K. G. Kartmazov, East.-Eur. J. Enterp. Tech., 48, No. 6/1: 66 (2010).