Structure and Properties of an Aviation Microalloyed Alloy of the Al–Cu System Obtained by Injection Moulding

А. Yu. Sezonenko$^{1}$, M. M. Yamshinskij$^{1,2}$, Ie. G. Byba$^{2,5}$, I. V. Lukianenko$^{1,2}$, Y. I. Yevych$^{3}$, D. S. Leonov$^{1}$, A. V. Minitsky$^{2}$, R. V. Lytvyn$^{1,3}$, М. Yu. Barabash$^{1,2,4}$

$^{1}$Technical Centre, N.A.S. of Ukraine, 13 Pokrovs’ka Str., UA-04070 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Beresteiskyi Ave., UA-03056 Kyiv, Ukraine
$^{3}$I. M. Frantsevich Institute for Problems in Materials Science, N.A.S. of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine
$^{4}$Gas Institute of N.A.S. of Ukraine, 39, Degtyarivska Str., UA-03113 Kyiv, Ukraine
$^{5}$Institute for Applied Control Systems, N.A.S. of Ukraine, 42 Akademician Hlushkov Ave., UA-03187 Kyiv, Ukraine

Received: 01.07.2025; final version - 02.07.2025. Download: PDF

Laminar filling of the mould with a melt based on the Al–Cu system is successfully implemented, resulting in minimal formation of technological imperfections and casting defects. By applying an overpressure during solidification, an improved high-strength and heat-resistant casting alloy АМ4.5Кд (ВАЛ10) is obtained. It is demonstrated that the region of applied additional pressure on the melt during crystallization significantly influences the plasticity and hardness of the material. It is determined that a key feature of the АМ4.5Кд alloys is the presence of strengthening phase particles distributed in the matrix. These phases do not interact with the Al matrix and originate from a targeted thermal treatment process. The basis for the dispersion strengthening in such solid solutions is their microheterogeneity within the grains of the α-solid solution, which more effectively enhances the heat resistance of the alloy. The complete set of alloying elements enables the creation of composites in which solid-solution and dispersion strengthening mechanisms are simultaneously realized.

Key words: cast aluminium alloys, mechanical properties, X-ray phase analysis, hardening.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i10/1083.html

DOI: https://doi.org/10.15407/mfint.47.10.1083

PACS: 61.05.cp, 61.25.Mv, 61.66.Dk, 62.20.-x, 64.75.-g

Citation: А. Yu. Sezonenko, M. M. Yamshinskij, Ie. G. Byba, I. V. Lukianenko, Y. I. Yevych, D. S. Leonov, A. V. Minitsky, R. V. Lytvyn, and М. Yu. Barabash, Structure and Properties of an Aviation Microalloyed Alloy of the Al–Cu System Obtained by Injection Moulding, Metallofiz. Noveishie Tekhnol., 47, No. 10: 1083–1099 (2025) (in Ukrainian)


REFERENCES
  1. A. Yu. Sezonenko, M. M. Petryshyn, A. A. Kolesnichenko, R. V. Lytvyn, I. V. Lukianenko, Ie. G. Byba, M. M. Yamshinskij, and M. Yu. Barabash, Results in Materials, 21: 100539 (2024).
  2. M. M. Petryshyn, A. Yu. Sezonenko, M. M. Yamshinskij, Ie. G. Byba, I. V. Lukianenko, D. S. Leonov, A. A. Kolesnichenko, R. V. Lytvyn, and M. Yu. Barabash, Metallofiz. Noveishie Tekhnol., 46, No. 4: 325 (2024).
  3. A. B. Shevchenko and M. Yu. Barabash, Results in Physics, 13: 102294 (2019).
  4. D. Ivanchenko and M. Yamshinskij, Int. J. Eng. Research Technol., 10, No. 10: 411 (2021).
  5. I. A. Mazkevich and E. B. Khyryna, Metals and Metalworking Tools: Brief Reference (Odessa: Studio ‘Negotsiant’: 2002).
  6. I. N. Frilyander, Struktura i Svoystva Splavov [Structure and Properties of Alloys] (Moskva: Metallurgy: 1979) (in Russian).
  7. Ya. S. Umansky, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Kristallografiya, Rentgenografiya i Elektronnaya Mikroskopiya [Crystallography, Radiography and Electron Microscopy] (Moskva: Metallurgy: 1982) (in Russian).
  8. G. B. Stroganov, Vysokoprochnye Litye Alyuminievye Splavy [High-Strength Casting Aluminium Alloys] (Moskva: Metallurgy: 1985 (in Russian).
  9. N. A. Belov, Izv. Vuzov. Tsvetnaya Metallurgia, 1: 48 (1995) (in Russian).
  10. I. F. Kolobnev, Zharoprochnost’ Litykh Alyuminievykh Splavov [Heat Resistance of Cast Aluminium Alloys] (Moskva: GOSNTI on Ferrous and Non-Ferrous Metallurgy: 1964) (in Russian).
  11. A. G. Prigunova, Y. A. Zhydkov, V. D. Babiuk, L. K. Shenevidko, and T. G. Tsir, Metal Sci. Treatment of Metals, 28, No. 3: 3 (2022).
  12. A. G. Prigunova, Y. A. Zhydkov, V. D. Babiuk, A. G. Borisov, and L. K. Shenevidko, Metal Sci. Treatment of Metals, 28, No. 1: 29 (2022).
  13. B. Meurer, D. Haferkamp, and A. Jörg, Use of Simulation in the Production of Cast Aluminium Wheels (Solingen: Michelin Kronprinz Werke GmbH: 2002).
  14. H.-R. Zhang, Z.-B. Liu, Z.-Z. Li, G.-W. Li, and H. Zhang, Acta Metallurgica Sinica (English Letters), 29, No. 5: 414 (2016).
  15. A. R. Toleuova, Bulletin of the N.A.S. of the Republic of Kazakhstan, 1: 49 (2011).
  16. V. I. Trefilov, Yu. V. Milman, and S. A. Firstov, Fyzycheskye Osnovy Prochnosty Tuhoplavkykh Metallov [Physical Foundations of the Strength of Refractory Metals] (Kyiv: Naukova Dumka: 1975) (in Russian).
  17. G. F. Shemetev, Aluminium Alloys: Compositions, Properties, Applications. Study Guide for the Course ‘Production of Castings from Non-Ferrous Metal Alloys’ (Saint Petersburg: 2012), part I.
  18. L. F. Mondolfo, Alyuminievye Splavy: Struktura i Svoystva [Aluminium Alloys: Structure and Properties] (Moskva: Metallurgy: 1979) (in Russian).