Analysis of the Influence of Alloying Elements and Annealing Temperature on the Microstructure of Zr–Nb–Sn Alloys and Mechanical Properties during Deformations

V. O. Kharchenko$^{1,2}$, D. O. Kharchenko$^{1}$, O. M. Shchokotova$^{1}$, O. B. Lysenko$^{1}$, S. V. Kokhan$^{1}$, D. V. Leykykh$^{1}$, A. V. Dvornychenko$^{2}$

$^{1}$Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine
$^{2}$Sumy State University, 116 Kharkivs’ka Str., UA-40007 Sumy, Ukraine

Received: 21.02.2025; final version - 02.07.2025. Download: PDF

We study the dynamics of microstructural transformations and the evolution of vacancies’ ensemble during the heat treatment of Zr–Nb–Sn alloys with a low concentration of alloying elements by the phase-field modelling. An influence of alloying elements and annealing temperature on the kinetic and statistical properties of the evolution of the microstructure, defect structure, and mechanical properties of the alloys is examined. As found, during heat treatment, niobium-enriched β-phase precipitates emerge, while tin and equilibrium vacancies with higher concentration segregate at the boundaries of the β-phase outside the precipitates. As established, increasing the annealing temperature and/or the concentration of tin and niobium induces the precipitates’ nucleation. The addition of tin leads to the formation of a larger number of smaller precipitates, while reducing the concentration of niobium decreases significantly their density. As shown, reducing the annealing temperature improves the mechanical properties. An addition of tin results in elevated values of the yield and strength limits for the alloy.

Key words: phase-field method, numerical modelling, precipitates of secondary phases, statistical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i11/1149.html

DOI: https://doi.org/10.15407/mfint.47.11.1149

PACS: 61.72.Bb, 61.72.Cc, 61.72.jd, 61.72.Qq, 61.72.S-, 62.20.F-, 83.50.-v

Citation: V. O. Kharchenko, D. O. Kharchenko, O. M. Shchokotova, O. B. Lysenko, S. V. Kokhan, D. V. Leykykh, and A. V. Dvornychenko, Analysis of the Influence of Alloying Elements and Annealing Temperature on the Microstructure of Zr–Nb–Sn Alloys and Mechanical Properties during Deformations, Metallofiz. Noveishie Tekhnol., 47, No. 11: 1149–1170 (2025) (in Ukrainian)


REFERENCES
  1. Y. H. Jeong, K. O. Lee, and H. G. Kim, J. Nuclear Mater., 302: 9 (2002).
  2. H. G. Kim, J. Y. Park, and Y. H. Jeong, J. Nuclear Mater., 347: 140 (2005).
  3. P. Cirimello, G. Domizzi, and R. Haddad, J. Nuclear Mater., 350: 135 (2006).
  4. C. Ramos, M. Granovsky, and C. Saragovi, Physica B: Condensed Matter, 389: 67 (2007).
  5. G. Choudhuri, M. K. Kumar, V. Kain, D. Srivastava, S. Basu, B. Shah, N. Saibaba, and G. Dey, J. Nuclear Mater., 441: 178 (2013).
  6. M. Ito, K. Ko, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd., 446: 451 (2007).
  7. T. Toyama, Y. Matsukawa, K. Saito, Y. Satoh, H. Abe, Y. Shinohara, and Y. Nagai, Scripta Mater., 108: 156 (2015).
  8. V. Shishov, M. Peregud, A. Nikulina, Y. Pimenov, G. Kobylyansky, A. Novoselov, Z. Ostrovsky, and A. Obukhov, J. ASTM Int., 2: 1 (2005).
  9. S. Doriot, J. L. Béchade, M. H. Mathon, L. Legras, and J. P. Mardon, Zirconium in the Nuclear Industry: Fourteenth Int. Symp. (Eds. P. Rudling and B. Kammenzind) (ASTM International: 2005), p. 918.
  10. V. N. Shishov, A. V. Nikulina, V. A. Markelov, M. M. Peregud, A. V. Kozlov, S. A. Averin, S. A. Kolbenkov, and A. E. Novoselov, Zirconium in the Nuclear Industry: Eleventh Int. Symp. (Eds. E. R. Bradley and G. P. Sabol) (ASTM International: 1996), p. 921.
  11. C. Cann, C. So, R. Styles, and C. Coleman, J. Nuclear Mater., 205: 267 (1993).
  12. F. Onimus and J. Bechade, Comprehensive Nuclear Materials (Eds. T. R. Allen, R. E. Stoller, and P. S. Yamanaka) (Amsterdam: Elsevier: 2012), vol. 4, p. 1.
  13. G. He, J. Liu, K. Li, J. Hu, A. H. Mir, S. Lozano-Perez, and C. Grovenor, J. Nuclear Mater., 526: 151738 (2019).
  14. Q. Dong, Z. Yao, Q. Wang, H. Yu, M. A. Kirk, and M. R. Daymond, Metals, 7: 287 (2017).
  15. T. Andersson and G. Vesterlund, Zirconium in the Nuclear Industry (Ed. D. G. Franklin) (ASTM International: 1982), p. 498.
  16. T. Andersson and T. Thorvaldsson, Zirconium in the Nuclear Industry (Eds. R. B. Adamson and L. F. P. Van Swam) (ASTM International: 1987), p. 846.
  17. B. Cheng and R. B. Adamson, Zirconium in the Nuclear Industry (Eds. R. B. Adamson and L. F. P. Van Swam) (ASTM International: 1987), p. 387.
  18. R. Kruger, R. Adamson, and S. Brenner, J. Nuclear Mater., 189: 193 (1992).
  19. T. Kubo and M. Uno, Zirconium in the Nuclear Industry: Ninth Int. Symp. (Eds. C. M. Eucken and A. M. Garde) (ASTM International: 1991), p. 807.
  20. G. Maussner, E. Steinberg, and E. Tenckhoff, Zirconium in the Nuclear Industry (Eds. R. B. Adamson and L. F. P. Van Swam) (ASTM International: 1987), p. 846.
  21. R. Krishnan and M. Asundi, Proc. Indian Academy of Sciences .C: Eng. Sci., 4: 41 (1981).
  22. S. Lumley, S. Murphy, P. Burr, R. Grimes, P. Chard-Tuckey, and M. Wenman, J. Nuclear Mater., 437: 122 (2013).
  23. L. Wu, V. O. Kharchenko, D. O. Kharchenko, and R. Pan, Mater. Today Communications, 26: 101765 (2021).
  24. Z. Yu, X. Xu, A. Mansoor, B. Du, K. Shi, K. Liu, S. Li, and W. Du, J. Mater. Sci. Technol., 88: 21 (2021).
  25. R. Liu, D. L. Yin, and J. T. Wang, Magnesium Technology (Eds. S. N. Mathaudhu, W. H. Sillekens, N. R. Neelameggham, and N. Hort) (Springer: 2012), p. 555.
  26. W. Cai, J. Zhang, Z. Gao, and J. Sui, Applied Phys. Lett., 92: 252502 (2008).
  27. J. W. Cahn, Acta Metallurgica, 9: 795 (1961).
  28. J. W. Cahn, Acta Metallurgica, 10: 179 (1962).
  29. J. W. Cahn and J. E. Hilliard, Acta Metallurgica, 19: 151 (1971).
  30. A. G. Khachaturyan, Theory of Structural Transformations in Solids (Courier Corporation: 2013).
  31. L.-Q. Chen, Acta Metallurgica et Materialia, 42: 3503 (1994).
  32. S. G. Kim, W. T. Kim, and T. Suzuki, Phys. Rev., 60: 7186 (1999).
  33. L.-Q. Chen, Annual Rev. Mater. Research, 32: 113 (2002).
  34. N. Moelans, B. Blanpain, and P. Wollants, Calphad, 32: 268 (2008).
  35. K. Wu, S. Chen, F. Zhang, and Y. Chang, J. Phase Equilibria Diffusion, 30: 571 (2009).
  36. I. Loginova, J. Odqvist, G. Amberg, and J. Agren, Acta Mater., 51: 1327 (2003).
  37. G. Choudhuri, S. Chakraborty, D. Srivastava, and G. Dey, Results in Phys., 3: 7 (2013).
  38. D. O. Kharchenko, V. O. Kharchenko, I. O. Lysenko, and I. A. Shuda, Physica A: Statistical Mechanics and Its Applications, 486: 497 (2017).
  39. D. O. Kharchenko, V. O. Kharchenko, Y. Ovcharenko, O. Lysenko, I. A. Shuda, L. Wu, and R. Pan, Cond. Matter Phys., 21: 13002 (2018).
  40. D. O. Kharchenko, V. O. Kharchenko, A. I. Bashtova, V. V. Kupriienko, and L. Wu, J. Applied Phys., 129: 035104 (2021).
  41. A. Onuki, Phase Transition Dynamics (Cambridge: Cambridge University Press: 2002).
  42. D. O. Kharchenko, O. M. Shchokotova, V. O. Kharchenko, V. V. Kupriienko, S. Kokhan, X. Wu, and L. Wu, Radiation Effects and Defects in Solids, 175: 602 (2020).
  43. S. Rokkam, A. El-Azab, P. Millett, and D. Wolf, Modelling Simulation Mater. Sci. Eng., 17: 064002 (2009).
  44. Z. Z. Li, Y. H. Li, D. Terentyev, N. Castin, A. Bakaev, G. Bonny, Z. Yang, L. Liang, H. B. Zhou, F. Gao, and G.-H. Lu, Acta Mater., 219: 117239 (2021).
  45. M. R. Tonks, A. Cheniour, and L. Aagesen, Computational Mater. Sci., 147: 353 (2018).
  46. M. R. Tonks and L. K. Aagesen, Annual Rev. Mater. Res., 49: 79 (2019).
  47. A. Basak and V. I. Levitas, Acta Mater., 189: 255 (2020).
  48. A. Basak and V. I. Levitas, Computer Methods Applied Mech. Eng., 343: 368 (2019).
  49. S. B. Biner, Programming Phase-Field Modelling (Springer: 2017).
  50. N. Saunders and A. P. Miodownik, CALPHAD (Calculation of Phase Diagrams): a Comprehensive Guide (Elsevier: 1998).
  51. A. T. Dinsdale, Calphad, 15: 317 (1991).
  52. V. O. Kharchenko, T. Xin, L. Wu, D. O. Kharchenko, V. V. Kuprienko, and I. O. Shuda, Modelling Simulation Mater. Sci. Eng., 30, No. 7: 075006 (2022).
  53. V. O. Kharchenko, X. Kong, T. Xin, L. Wu, O. M. Shchokotova, D. O. Kharchenko, and S. V. Kokhan, Phys. Scr., 98: 03571 (2023).
  54. P. C. Hohenberg and B. I. Halperin, Rev. Modern Phys., 49: 435 (1977).
  55. J. D. Gunton, M. San Miguel, and P. S. Sahni, Phase Transitions and Critical Phenomena (Eds. C. Domb and J. L. Lebowitz) (London: Academic Press: 1983), vol. 8, p. 269.
  56. Y. Wang, L. Q. Chen, and A. G. Khachaturyan, Computer Simulation in Materials Science Nano/Meso/Macroscopic Space and Time Scales (Eds. H. O. Kirchner, K. P. Kubin, and V. Pontikis) (Dordrecht: Kluwer Academic Publishers: 1996), p. 325.
  57. Y. Wang and L. Chen, A Current Protocols (New York: John Wiley & Sons: 2000).
  58. K. Wu, J. Morral, and Y. Wang, Acta Mater., 49: 3401 (2001).
  59. C. Huang, M. O. de La Cruz, and B. Swift, Macromolecules, 28: 7996 (1995).
  60. A. Onuki, Phys. Rev. E, 68: 061502 (2003).
  61. A. Minami and A. Onuki, Phys. Rev. B, 70: 184114 (2004).
  62. A. Minami and A. Onuki, Phys. Rev. B, 72: 100101 (2005).
  63. A. Onuki, A. Furukawa, and A. Minami, Pramana, 64: 661 (2005).
  64. A. Minami and A. Onuki, Acta Mater., 55: 2375 (2007).
  65. S. Hu and L. Chen, Acta Mater., 49: 1879 (2001).
  66. A. Turkin and A. Bakai, J. Nuclear Mater., 358: 10 (2006).
  67. T. Korhonen, M. J. Puska, and R. M. Nieminen, Phys. Rev. B, 51: 9526 (1995).
  68. F. Legrain and S. Manzhos, AIP Adv., 6: 045116 (2016).
  69. W. Wolfer, Comprehensive Nuclear Mater., 1: 1 (2012).
  70. E. Fisher and C. Renken, Phys. Rev., 135: A482 (1964).
  71. Y. J. Hao, L. Zhang, X. R. Chen, Y. H. Li, and H. L. He, J. Phys.: Cond. Matter, 20: 235230 (2008).
  72. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (Cambridge: MIT Press: 1971).
  73. S. Vaboya and G. Kennedy, J. Phys. Chem. Solids, 31: 2329 (1970).
  74. G. Choudhuri, S. Chakraborty, D. Srivastava, and G. Dey, Results in Phys., 3: 7 (2013).
  75. A. C. Jain, P. A. Bur, and D. R. Trinkle, Phys. Rev. Mater., 3: 033402 (2019).
  76. F. Christien and A. Barbu, J. Nuclear Mater., 346: 272 (2005).
  77. L. Q. Chen and J. Shen, Computer Phys. Communications, 108: 147 (1998).
  78. J. Ramos and C. Canuto, Applied Mathematical Modelling (Springer-Verlag: 1988).
  79. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 19: 35 (1961).
  80. C. Wagner, Z. Elektrochem., 65: 581 (1961).
  81. J. A. Marqusee and J. Ross, J. Chem. Phys., 80: 536 (1984).
  82. A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, and M. J. Alava, Sci. Rep., 8: 1 (2018).
  83. V. Serbenta, N. Skripnyak, V. Skripnyak, and E. Skripnyak, AIP Conf. Proc., 1909: 020190 (2017).
  84. M. Horstemeyer, S. Plimpton, and M. Baskes, Acta Mater., 49: 4363 (2001).
  85. Z. Liu, X. You, and Z. Zhuang, Int. J. Solids Structures, 45: 3674 (2008).
  86. Y. Guo, Z. Zhuang, X. Li, and Z. Chen, Int. J. Solids Structures, 44: 1180 (2007).
  87. S. J. Oh, C. Jang, J. H. Kim, and Y. H. Jeong, Mater. Sci. Eng. A, 528: 3771 (2011).
  88. C. Lemaignan, Comprehensive Nuclear Mater., 2: 217 (2012).
  89. P. Zhang, X. Hu, G. Sun, B. Gao, and B. Xu, Mater. Sci. Forum, 944: 99 (2019).
  90. S. Neogy, D. Srivastava, J. K. Chakravartty, G. K. Dey, and S. Banerjee, Metall. Mater. Trans. A, 38: 485 (2007).
  91. C. Song, Z. Zou, Z. Yan, X. Yao, F. Liu, Y. Yang, M. Yan, and C. Han, Virtual Phys. Prototyping, 18: e2189597 (2020).
  92. Z. H. Feng, C. Q. Xia, X. J. Jiang, S. G. Liu, X. Zhang, X. Y. Zhang, M. Z. Ma, and R. P. Liu, Mater. Sci. Eng. A, 677: 393 (2016).
  93. Y. Liu, Z. Wu, W. Gao, L. Zhao, Y. Song, Y. Chen, H. Luo, Q. Wang, L. Yang, L. Zeng, X. Zhang, and X. Ding, J. Mater. Research Technol., 23: 3570 (2023).