Stress Concentrators within the Atomic Model of the Structure of Metallic Materials. 1. General Principles of Constructing a Model of Stress Concentrators in the Atomic Lattices of Metals

P. Yu. Volosevych

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv

Received: 16.02.2023; final version - 12.08.2025. Download: PDF

Based on the firstly proposed model for the origin, structure, interaction and transformation of three types of stress concentrators (К), each of which is represented by the extraction concentrators (К) and the interstitial ones (К+) at the scale levels of microscopic and atomic structure of samples of metallic materials, the loss of the corresponding mechanical stability is considered under the influence of these stress concentrators. The stress concentrators of the first type include the non-standard concentrators (Кн±), which are always present in real samples. The stress concentrators of the second and third types are generated by loads along the atomic chains of the crystal lattices (Ксе±) and grain boundaries (Кмз±) or cells (Кмк±). The role of the sets of these primary concentrators (Ксе±) in the formation of the groups of complex standard elementary internal concentrators (Кксев) is demonstrated, and the appearance of the Кн on the inner surfaces of pores (cracks) or side surfaces of the samples is shown to be always accompanied by the formation of the vertices of complex standard elementary microscopic surface concentrators (Кксемп). The sets of Кксемп in the vicinity of the perimeters of the planes of the mechanical stability loss of samples form the vertices of complex standard surface macroscopic concentrators (Кксп). The Кксп concentrators generally represent the necks, which are the macroscopic extraction concentrators of natural origin and analogous to artificial concentrators К considered in mechanics. The interrelation between the concentrators К of different types is demonstrated for the first time. Additionally, the fact of the appearance of non-standard concentrators (Кн±) with asymmetric systems of their location on the surfaces and in the core of the sample gauge in both single- and polycrystalline states is shown to be accompanied by corresponding violations in the filed-distribution symmetry of tensile/compressive stresses occurred on the vertices of standard elementary concentrators К of all types and scale levels. As a result, there are the sample fragmentation and the deviations in the location of the trajectories’ loss of the mechanical stability of their gauges from the positions of their middle axial sections, which are realized in the absence of Кн in the states with ideal crystal structures. The proposed ideas regarding the concentrators are in good agreement with the experimental and theoretical results obtained for both single- and polycrystalline states of various metals and their alloys. The model is able to predict the development of both plastic and brittle relaxation processes under any test schemes and loading rates.

Key words: stress concentrators, atomic structure, interatomic interaction, single- and polycrystalline states, deformation rates, plastic and brittle relaxation mechanisms, mechanical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i11/1215.html

DOI: https://doi.org/10.15407/mfint.47.11.1215

PACS: 34.20.Cf, 46.50.+a, 61.72.Bb, 61.72.J-, 61.72.Lk, 61.72.Qq, 62.20.mt

Citation: P. Yu. Volosevych, Stress Concentrators within the Atomic Model of the Structure of Metallic Materials. 1. General Principles of Constructing a Model of Stress Concentrators in the Atomic Lattices of Metals, Metallofiz. Noveishie Tekhnol., 47, No. 11: 1215–1237 (2025) (in Ukrainian)


REFERENCES
  1. H. Neuber, Kontsentratsiya Napryazheniy [Stress Concentration] (Moskva–Leningrad: OGIZ GITTL: 1947) (Russian translation).
  2. P. Yu. Volosevych, Metallofiz. Noveishie Tekhnol., 29, No. 10: 1393 (2007) (in Russian).
  3. S. A. Kotrechko and Yu. Ya. Meshkov, Predel’naya Prochnost’. Kristally, Metally, Konstruktsii [Ultimate Strength. Crystals, Metals, Structures] (Kiev: Naukova Dumka: 2008) (in Russian).
  4. P. Yu. Volosevych, Proc. of Int. Conf. ‘Fracture Mechanics of Materials and Strength of Structures’ (Lviv: 2009), p. 93 (in Russian).
  5. P. Yu. Volosevych, Usp. Fiz. Met., 12, No. 3, 367 (2011) (in Russian).
  6. P. Yu. Volosevych, Proc. of Int. Conf. ‘Fracture Mechanics of Materials and Strength of Structures’ (June 24–27, 2014) (Lviv: 2014), p. 157 (in Russian).
  7. Yu. Ya. Meshkov, S. A. Kotrechko, and A. V. Shiyan, Mekhanicheskaya Stabil’nost’ Metallov i Splavov [Mechanical Stability of Metals and Alloys] (Kiev: Naukova Dumka: 2014) (in Russian).
  8. P. Yu. Volosevych and A. V. Shiyan, Stal’, No. 6: 58 (2015).
  9. P. Yu. Volosevich, Usp. Fiz. Met., 19, No. 2: 157 (2018) (in Russian).
  10. V. E. Panin, V. A. Likhachev, and O. V. Grinyaev, Strukturnyye Urovni Deformatsii Tverdykh Tel [Structural Deformation Levels of Solids] (Moskva: Nauka: 1985) (in Russian).
  11. H. Haken, Sinergetika. Iyerarkhiya Neustoychivostey v Samoorganizuyushchikhsya Sistemakh i Ustroystvakh [Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices] (Moskva: Mir: 1985) (Russian translation).
  12. V. Y. Suhakov, Osnovy Synergetyky [Fundamentals of Synergetics] (Kyiv: Oberihy: 2001) (in Ukrainian).
  13. C. C. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, Rentgenograficheskiy i Ehlektronnoopticheskiy Analiz [X-Ray and Electron-Optical Analysis] (Moskva: Metallurgiya: 1976) (in Russian).
  14. Z. S. Basinski and J. W. Christian, Proc. Roy. Soc. A, 223: 554 (1954).
  15. I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt, Sci. Rep., 4: 55 (2014).
  16. E. V. Sudarikova, Nerazrushayushchiy Kontrol’ v Proizvodstve [Non-Destructive Testing in Production] (Saint Petersburg: 2007) (in Russian).
  17. Kolebaniya i Volny, Optika, Atomnaya i Yadernaya Fizika: Ehlementarnyy Uchebnik Fiziki [Oscillations and Waves, Optics, Atomic and Nuclear Physics: Elementary Physics Textbook] (Ed. G. S. Lansberg) (Moskva: Nauka: 2003) (in Russian).
  18. A. M. Afonin, Fizicheskie Osnovy Mekhaniki [Physical Foundations of Mechanics] (Moskva: Izdatel’stvo MGTU im. Baumana: 2006) (in Russian).
  19. J. Ziman, Printsipy Teorii Tverdogo Tela [Principles of the Theory of Solids] (Moskva: Mir: 1966) (Russian translation).
  20. L. D. Landau and E. M. Lifshits, Teoriya Uprugosti [Theory of Elasticity] (Moskva: Nauka: 1965) (in Russian).
  21. A. M. Kosevich, Osnovy Mekhaniki Kristallicheskoy Reshetki [Fundamentals of Crystal Lattice Mechanics] (Moskva: Nauka: 1972) (in Russian).
  22. J. A. Reissland, Fizika Fononov [The Physics of Phonons] (Moskva: Mir: 1975) (Russian translation).
  23. I. Kh. Badamshin, Ot Chetyrekh k Odnomu. Sily Vnutrennego Vzaimodeystviya i Prochnost’ Materialov [From Four to One. Internal Interaction Forces and Material Strength] (Moskva: Izdatel’skiy Dom Akademii: 2016) (in Russian).
  24. P. Yu. Volosevych, Metallofiz. Noveishie Tekhnol., 16: 1179 (1997) (in Russian).
  25. I. Ya. Perlin and M. Z. Ermanok, Teoriya Volocheniya [Theory of Bragging] (Moskva: Metallurgiya: 1971) (in Russian).
  26. N. N. Davidenkov and N. I. Spiridonova, Zavodskaya Laboratoriya, No. 11: 583 (1945) (in Russian).
  27. V. I. Reznikov and V. M. Segal, Problemy Prochnosti, No. 1: 78 (1980) (in Russian).
  28. P. Yu. Volosevych and T. N. Serditova, Poroshkovaya Metallurgiya, No. 5: 67 (1988) (in Russian).
  29. P. Yu. Volosevych, V. A. Moskalenko, T. N. Serditova, and V. I. Eremin, Metallofizika, 8, No. 3: 111 (1986) (in Russian).
  30. P. Yu. Volosevych, Yu. Ya. Meshkov, and T. N. Serditova, Metallofizika, 7, No. 3: 93 (1985) (in Russian).
  31. S. A. Firstov, Progressivnyye Materialy i Tekhnologii [Progressive Materials and Technologies] (Kiev: 2003), vol. 2, p. 610 (in Russian).
  32. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskiy, I. D. Gornaya, and A. D. Vasil’ev, Deformatsionnoye Uprochnenie i Razrushenie Polikristallicheskikh Metallov [Strain Hardening and Fracture of Polycrystalline Metals] (Kiev: Naukova Dumka: 1979) (in Russian).
  33. D. McLean, Mekhanicheskie Svoistva Metallov [Mechanical Properties of Metals] (Moskva: Metallurgiya: 1965) (Russian translation).
  34. R. Berner and H. Kronmuller, Plasticheskaya Deformatsiya Monokristallov [Plastic Deformation of Single Crystals] (Moskva: Mir: 1969) (Russian translation).
  35. V. I. Trefilov, Yu. V. Mil’man, and S. A. Firstov, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov [Physical Principles of Strength of Refractory Metals] (Kiev: Naukova Dumka: 1975) (in Russian).
  36. T. Yokobori, Nauchnye Osnovy Prochnosti i Razrusheniia Materialov [Scientific Principles of Strength and Fracture of Materials] (Kiev: Naukova Dumka: 1978) (Russian translation).
  37. J. F. Knott, Osnovy Mekhaniki Razrusheniya [Fundamentals of Fracture Mechanics] (Moskva: Metallurgiya: 1978) (Russian translation).
  38. O. N. Romaniv, Vyazkost’ Razrusheniya Konstruktsionnykh Staley [Fracture Toughness of Structural Steels] (Moskva: Metallurgiya: 1979) (in Russian).
  39. V. T. Troshchenko, Deformirovanie i Razrushenie Metallov pri Mnogotsiklovom Nagruzhenii [Deformation and Fracture of Metals under Multiple-Cycle Loading] (Kiev: Naukova Dumka: 1981) (in Russian).
  40. R. W. K. Honeycombe, Plasticheskaya Deformatsiya Metallov [The Plastic Deformation of Metals] (Moskva: Mir: 1972) (Russian translation).
  41. V. P. Alekhin, Fizika Prochnosti i Plastichnosti Poverkhnostnykh Sloev Materialov [Physics of Strength and Plasticity of Surface Layers of Materials] (Moskva: Nauka: 1983) (in Russian).
  42. V. S. Ivanova and V. F. Terent’ev, Fizika i Khimiya Obrabotki Materialov, 1: 79 (1970) (in Russian).
  43. V. S. Ivanova, V. F. Terent’ev, and V. G. Poyda, Metallofizika, No. 43: 63 (1972) (in Russian).
  44. V. F. Terent’ev, Ustalost’ Metallicheskikh Materialov [Fatigue of Metallic Materials] (Moskva: Nauka: 2003) (in Russian).
  45. P. Yu. Volosevych, Metallofiz. Noveishie Tekhnol., 18, No. 10: 63 (1996) (in Russian).
  46. I. V. Gavrilin, Metallurgiya Mashinostroyeniya, No. 4: 10 (2002) (in Russian).
  47. I. V. Gavrilin, Plavlenie i Kristallizatsiya Metallov i Splavov [Melting and Crystallization of Metals and Alloys] (Vladimir: VlGU: 2000) (in Russian).
  48. S. V. Dmitrieva, A. A. Ovcharov, M. D. Starostenkov, and Eh. V. Kozlov, Fizika Tverdogo Tela, 38, No. 6: 1805 (1996) (in Russian).
  49. Yu. Ya. Meshkov, A. V. Shyyan, and O. V. Zatsarna, Metallofiz. Noveishie Tekhnol., 42, No. 7: 1029 (2020) (in Ukrainian).
  50. S. A. Kotrechko, A. V. Filatov, and A. V. Ovsyannikov, Metallofiz. Noveishie Tekhnol., 29, No. 1: 115 (2007) (in Russian).
  51. L. B. Zuev, S. A. Barannikova, and A. G. Lunev, Usp. Fiz. Met., 19, No. 4: 379 (2018) (in Russian).
  52. V. E. Panin, V. E. Egorushkin, A. V. Panin, and A. G. Chernyavskiy, Fizicheskaya Mezomekhanika, 19, No. 1: 31 (2016) (in Russian).
  53. S. Schönecker, X. Li, B. Johansson, S. K. Kwon, and L. Vitos, Sci. Rep., 5: 14860 (2015).
  54. A. Patra, J. E. Bates, J. Sun, and J. P. Perdew, PNAS, 114: E9188 (2017).