Elasticity at Martensitic Inelastic Behaviour for Industrial NiTi, CuAlMn and Novel High-Entropy TiZrHfCoNiCu Shape-Memory Alloys

Yu. M. Koval$^{1}$, V. S. Filatova$^{1}$, V. V. Odnosum$^{1}$, O. A. Shcheretskyi$^{2}$, G. S. Firstov$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Physico-Technological Institute of Metals and Alloys, N.A.S. of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 10.10.2025; final version - 05.12.2025. Download: PDF

Elastic properties of shape-memory alloys are of great importance because, among other factors, they determine movement of dislocations and thermoelastic phase-equilibrium phenomenon. This paper is concerned with the consideration of the elastic-modulus evolution at temperature-induced martensitic transformation compared with such at the shape-memory temperature cycle for NiTi, CuAlMn and TiZrHfCoNiCu shape-memory alloys.

Key words: martensitic transformation, elastic modulus, shape memory, internal friction, shape-memory alloys.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i12/1281.html

DOI: https://doi.org/10.15407/mfint.47.12.1281

PACS: 61.72.Hh, 61.72.Lk, 62.20.fg, 62.40.+i, 64.70.kd, 65.40.De, 81.30.Kf

Citation: Yu. M. Koval, V. S. Filatova, V. V. Odnosum, O. A. Shcheretskyi, and G. S. Firstov, Elasticity at Martensitic Inelastic Behaviour for Industrial NiTi, CuAlMn and Novel High-Entropy TiZrHfCoNiCu Shape-Memory Alloys, Metallofiz. Noveishie Tekhnol., 47, No. 12: 1281–1293 (2025)


REFERENCES
  1. K. Otsuka and C. M. Wayman, Shape Memory Materials (Cambridge: Cambridge University Press: 1998).
  2. G. S. Firstov, T. A. Kosorukova, Yu. N. Koval, and V. V. Odnosum, Mater. Today Proc., 2: S499 (2015).
  3. G. S. Firstov, T. A. Kosorukova, Y. N. Koval, and P. A. Verhovlyuk, Shape Memory and Superelasticity, 1: 400 (2015).
  4. G. S. Firstov, Yu. M. Koval, V. S. Filatova, V. V. Odnosum, G. Gerstein, and H. Maier, Progress in Physics of Metals, 24, No. 4: 819 (2023).
  5. A. Seeger, Int. J. Mater. Research, 47, Iss. 9: 653 (1956).
  6. H. G. van Bueren, Imperfections in Crystals (Amsterdam: North Holland Publishing Co: 1960).
  7. H. Heinrich, H. P. Karnthaler, T. Waitz, and G. Kostorz, Mater. Sci. Eng. A, 272, Iss. 1: 238 (1999).
  8. R. R. Hasiguti and K. Iwasaki, J. Appl. Phys., 39: 2182 (1968).
  9. S. Spinner and A. G. Rozner, J. Acoustical Soc. America, 40: 1009 (1966).
  10. G. Mazzolai, AIP Advances, 1: 040701 (2011).
  11. J. Van Humbeeck, J. Stoiber, L. Delaey, and R. Gotthardt, Int. J. Mater. Research, 86: Iss. 3: 176 (1995).
  12. L. Bodnárová, M. Janovská, M. Ševčík, M. Frost, L. Kadeřávek, J. Kopeček, H. Seiner, and P. Sedlák, Shape Memory and Superelasticity, 11: 230 (2025).
  13. N. Koeda, T. Omori, Y. Sutou, H. Suzuki, M. Wakita, R. Kainuma, and K. Ishida, Mater. Trans., 46: 118 (2005).
  14. Yu. M. Koval, V. V. Odnosum, Vyach. M. Slipchenko, V. S. Filatova, A. S. Filatov, O. A. Shcheretskyi, and G. S. Firstov, Metallofiz. Noveishie Tekhnol., 46, No. 9: 933 (2024).
  15. K. M. Knowles and P. R. Howie, J. Elasticity, 120: 87 (2015).
  16. C. Zener, Elasticity and Anelasticity of Metals (Chicago: University of Chicago Press: 1948).