The Influence of Low-Temperature Austenite Transformation in Weld Metal on the Residual Stress State of Welded Joints of Armor Steel

O. A. Slyvinskyy$^{1}$, V. V. Kvasnytskyi$^{1}$, O. V. Prokhorenko$^{1}$, A. O. Perepichay$^{1}$, Ye. V. Illiashenko$^{2}$, I. M. Lahodzinskyi$^{1}$, D. S. Leonov$^{3}$, O. E. Datsiuk$^{1}$, V. M. Nesterenkov$^{2}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Beresteiskyi Ave., UA-03056 Kyiv, Ukraine
$^{2}$E. O. Paton Electric Welding Institute, N.A.S. of Ukraine, 11, Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine
$^{3}$Technical Center, N.A.S. of Ukraine, 13, Pokrovs’ka Str., UA-04070 Kyiv, Ukraine

Received: 12.11.2025; final version - 12.11.2025. Download: PDF

The results of a comprehensive study of the influence of structural and phase transformations in the metal of welds of MARS 600 ultra-high-hardness armour steel on the formation of components of the residual-stress state of the metal of 6 mm-thick butt joints, performed using arc welding with a consumable electrode in a protective gas (MAG) and plasma welding (PAW), are presented. The actual phase and chemical compositions of the weld metal is determined by electron microscopy, spectral analysis, x-ray diffractometry, and microdurometry; it is established that, during MAG welding of MARS 600 steel, an austenitic–martensitic structure with a hardness at least 1.7 times lower than the hardness of the base metal is formed in the weld metal, and during PAW welding, a rack martensite structure with a hardness up to ≅ 1.1 times greater than the hardness of the base metal is formed. Taking into account phase transformations during heating and cooling, a comparative finite-element analysis of the component level of the residual-stress state of the joints is carried out, with the execution of welds in the penetration (MAG and PAW1) and in two sections from the middle to the ends (PAW2). As established for the PAW1 welding scheme, due to the effect of low-temperature austenite transformation, the weld metal and dangerous sections of the HAZ are subjected to compressive stresses in the longitudinal and insignificant tensile stresses in the transverse directions. As shown, welding according to the PAW2 technological scheme is dangerous from the point of view of crack formation due to the formation of a stress concentrator in the area of the junction of two sections of the weld.

Key words: residual stresses, austenite transformation, microstructure, microhardness, arc welding in a protective gas, plasma welding, armour steel.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i12/1295.html

DOI: https://doi.org/10.15407/mfint.47.12.1295

PACS: 02.70.Dh, 44.05.+e, 52.77.Fv, 62.20.D-, 62.20.Qp, 81.20.Vj, 81.30.Kf

Citation: O. A. Slyvinskyy, V. V. Kvasnytskyi, O. V. Prokhorenko, A. O. Perepichay, Ye. V. Illiashenko, I. M. Lahodzinskyi, D. S. Leonov, O. E. Datsiuk, and V. M. Nesterenkov, The Influence of Low-Temperature Austenite Transformation in Weld Metal on the Residual Stress State of Welded Joints of Armor Steel, Metallofiz. Noveishie Tekhnol., 47, No. 12: 1295–1318 (2025) (in Ukrainian)


REFERENCES
  1. U. S. Military Specification, MIL-DTL-32332A (MR), ‘Armor Plate, Steel, Wrought, Ultra-High-Hardness’ (U.S. Army Research Laboratory, APG, MD, 28 November 2018).
  2. U. S. Military Specification, MIL-DTL-46100E (MR), ‘Armor Plate, Steel, Wrought, High-Hardness’ (U.S. Army Research Laboratory, APG, MD, 9 July 2008).
  3. G. Magudeeswaran, V. Balasubramanian, and G. Madhusudhan Reddy, Journal of Material Science and Technology, 25, No. 4: 516 (2009).
  4. B. Hanhold, S. S. Babu, and G. Cola, Science and Technology of Welding and Joining, 18, Iss. 3: 247 (2013).
  5. O. A. Gaivoronskyi, V. D. Poznyakov, A. V. Zavdoveyev, A. V. Klapatyuk, and A. M. Denisenko, The Paton Welding Journal, 5: 3 (2023).
  6. I. Garašić, M. Jurica, D. Iljkić, and A. Barišić, Engineering Review, 39, Iss. 2: 186 (2019).
  7. W. Wang, L. Huo, Y. Zhang, D. Wang, and H. Jing, Mater. Science Technol., 18, No. 6: 527 (2002).
  8. A. Kromm, J. Dixneit, and T. Kannengiesser, Welding in the World, 58: 729 (2014).
  9. E. Harati, L. Karlsson, L.-E. Svensson, and K. Dalaei, International Journal of Fatigue, 97: 39 (2017).
  10. X. Chen, P. Wang, Q. Pan, and S. Lin, Crystals, 8, No. 7: 293 (2018).
  11. Z. Feng, X. Di, S. Wu, and N. Ma, Science and Technology of Welding and Joining, 26, No. 2: 144 (2021).
  12. V. V. Kvasnytskyi, A. O. Perepichai, O. V. Prokhorenko, O. A. Slyvinskyi, and I. M. Lagodzinskyi, Strength of Materials, 56, No. 2: 258 (2024).
  13. B. Q. Chen and C. Guedes Soares, The International Journal of Advanced Manufacturing Technology, 86: 3145 (2016).
  14. J. N. DuPont and A. R. Marder, Welding Journal, 74, No. 12: 406s (1995).
  15. E. Macherauch and P. Muller, Zeitschrift für Angewandte Physik, 13: 305 (1961).
  16. N. Saunders, Z. Guo, X. Li, A. P. Miodownik, and J.-P. Schillé, JOM, 55: 60 (2003).
  17. Z. Guo, N. Saunders, A. P. Miodownik, and J.-P. Schillé, International Journal of Metallurgical Engineering, 2, No. 2: 198 (2013).
  18. J. A. Goldak and M. Akhlaghi, Computational Welding Mechanics (New York: Springer: 2005).
  19. C. P. Kothandaraman and S. Subramanyan, Heat and Mass Transfer Data (New Delhi: New Age International: 2018).
  20. O. Slyvinskyy, Y. Chvertko, and S. Bisyk, High Temperature Material Processes, 23, Iss. 3: 239 (2019).
  21. O. A. Slyvins’kyy, V. V. Kvasnyts’kyy, I. A. Vladymyrskyi, S. P. Bisyk, Ye. P. Chvertko, and V. L. Kovalenko, Metallophys. Adv. Technol., 46, No. 7: 663 (2024).
  22. R. von Mises, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 1: 582 (1913).
  23. G. Thewlis, Mater. Sci. Technol., 20, Iss. 2: 143 (2004).
  24. W. Steven and A. G. Haynes, Journal of the Iron and Steel Institute, 183, No. 8: 349 (1956).