Effect of Incomplete Replacement of Cr for Cu in the Deposited Alloy of Fe–C–Cr–B–Ti Alloying System with a Medium Boron Content (0.5% wt.) on its Corrosion Resistance

B. O. Trembach$^{1}$, M. G. Sukov$^{1}$, V. A. Vynar$^{2}$, I. O. Trembach$^{1,3}$, V. V. Subbotinа$^{4}$, O. Yu. Rebrov$^{4}$, O. M. Rebrova$^{4}$, V. I. Zakiev$^{5,6}$

$^{1}$Частное акционерное общество «Новокраматорский машиностроительный завод», ул. Олекса Тихого, 5, 84305 Краматорск, Украина
$^{2}$Физико-механический институт им. Г. В. Карпенка НАН Украины, ул. Наукова, 5, 79060 Львов, Украина
$^{3}$Донбасская государственная машиностроительная академия, ул. Академическая, 72, 84313 Краматорск, Украина
$^{4}$Национальный технический университет «Харьковский политехнический институт», ул. Кирпичева, 2, 61002 Харьков, Украина
$^{5}$Национальный авиационный университет, просп. Любомира Гузара, 1, 03058 Киев, Украина
$^{6}$Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Победы, 37, 03056 Киев, Украина

Получена: 24.02.2022. Скачать: PDF

In this research, the corrosion behaviour of the Fe–C–Cr–B–Ti alloying system deposited alloys applied by flux-cored arc welding are studied. Samples of deposited alloy with a high content of chromium (13% by weight of Cr) received with self-shielded flux-cored wire electrode without exothermic additions are investigated. For comparison, the deposited alloy received from self-shielded flux-cored wire with exothermal addition (CuO–Al) introduced to the core filler is also analyzed. It provides a low content of chromium (4% wt.) and a high content of copper (7% wt. Cu). The corrosion resistance of the deposited alloys layers is measured based on the results of potentiostatic polarization testing. After comparison of the corrosion current density Icorr and the corrosion electrode potential value Ecorr, measured for the 140Cr13Si1MnBTi and 110Cr4Cu7TiVBAl deposited alloys layers as found, these values varied from 1.525 mA/cm$^2$ to 0.166 mA/cm$^2$ and from 0.359 mV to 0.631 mV depending on the alloyed layers composition. Results of the studies are shown that the introduction of exothermic addition (CuO–Al) to the core filler of the flux-cored wire provides the highest resistance of the deposited alloy to corrosion due to additional alloying by copper. Thus, the proposed partial replacement of chromium with an equivalent amount of copper has a positive effect on the corrosion resistance increasing of Fe–C–Cr–B–Ti alloying system deposited alloy.

Ключевые слова: hardfacing, Fe–C–Cr–B–Ti alloys, self-shielded flux-cored arc welding, copper, exothermic addition, CuO–Al, SEM, corrosion resistance, potentiodynamic polarization.

URL: https://mfint.imp.kiev.ua/ru/abstract/v44/i04/0493.html

PACS: 46.15.-x, 46.55.+d, 68.35.bd, 81.15.Pq, 81.40.Pq, 82.45.Bb


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. K. Holmberg and A. Erdemir, Friction, 5: 263 (2017). Crossref
  2. J. Selech, D. Ulbrich, D. Romek, J. Kowalczyk, K. Wlodarczyk, and K. Nadolny, Materials, 13, No. 21: 4950 (2020). Crossref
  3. D. Romek, J. Selech, D. Ulbrich, A. Felusiak, P. Kieruj, E. Janeba-Bartoszewicz, and D. Pieniak, Tribologia, 2: 55 (2020). Crossref
  4. T. Shihab, P. Prysyazhnyuk, R. Andrusyshyn, L. Lutsak, O. Ivanov, and I. Tsap, Eastern-European J. Enterp. Technol., 1, No. 12: 38 (2020). Crossref
  5. L. Y. Ropyak, T. O. Pryhorovska, and K. H. Levchuk, Prog. Phys. Met., 21, No. 2: 274 (2020). Crossref
  6. T. Shihab, P. Prysyazhnyuk, I. Semyanyk, R. Anrusyshyn, O. Ivanov, and L. Troshchuk, Management Systems in Production Engineering, 28,No. 2: 84 (2020). Crossref
  7. O. Bazaluk, A. Velychkovych, L. Ropyak, M. Pashechko, T. Pryhorovska, and V. Lozynskyi, Energies, 14, No. 14: 4198 (2021). Crossref
  8. T. A. Shihab, L. S. Shlapak, N. S. Namer, P. M. Prysyazhnyuk, O. O. Ivanov, and M. J. Burda, J. Physics: Conference Series, 1741, No. 1: 012031 (2021). Crossref
  9. M. Dutkiewicz, T. Dalyak, I. Shatskyi, T. Venhrynyuk, and A. Velychkovych, Appl. Sci., 11, No. 22: 10676 (2021). Crossref
  10. B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev. A. P. Burmak, and V. V. Mohylko, J. Mater. Eng. and Perform., 30: 1780 (2021). Crossref
  11. O. V. Maksymiv, V. I. Kyryliv, V. P. Chaikovskyi, B. R. Tsizh, A. M. Kostruba, and V. I. Hurei, Mater. Sci., 56, No. 4: 523 (2021). Crossref
  12. M. O. Vasyliev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, and M. V. Kindrachuk, Metallofiz. Noveishie Tekhnol., 38, No. 4: 545 (2016). Crossref
  13. M. O. Vasylyev, B. M. Mordyuk, S. M. Voloshko, V. I. Zakiyev, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1499 (2019) (in Ukrainian). Crossref
  14. M. A. Vasylyev, B. N. Morduk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 42, No. 3: 381 (2020) (in Ukrainian). Crossref
  15. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, I. Konoplianchenko, M. Dovzyk, N. Tarelnyk, and S. Gorovoy, IOP Conf. Ser.: Mater. Sci. Eng., 233, No. 1: 012049 (2017). Crossref
  16. S. Knyazev, R. Rebrova, V. Riumin, V. Nikichanov, and A. Rebrova, Funct. Mater., 28, No. 1: 76 (2021). Crossref
  17. Z. A. Duryagina, S. A. Bespalov, A. K. Borysyuk, and V. Ya. Pidkova, Metallofiz. Noveishie Tekhnol., 33, No. 5: 615 (2011).
  18. H. Postelnyk, S. Knyazev, A. Meylekhov, V. Stolbovoy, and D. Kovteba, Eastern-European J. Enterp. Technol., 1, No. 5: 34 (2017). Crossref
  19. A. Taran, I. Garkusha, V. Taran, R. Muratov, V. Starikov, A. Baturin, and A. G. Mamalis, Nanotechnol. Percept., 16, No. 1: 56 (2020). Crossref
  20. V. I. Kutsevliak, S. L. Starikova, A. V. Taran, I. O. Misiruk, V. V. Starikov, A. A. Baturin, N. V. Konotopska, L. M. Dushyk, and N. V. Cherkova, PAST, Series: Plasma Physics, 1, No. 27: 127 (2021). Crossref
  21. R. S. Yakym, and D. Y. Petryna, Metallofiz. Noveishie Tekhnol., 42, No. 5: 731 (2020). Crossref
  22. M. I. Pashechko and J. Montusiewicz, Mater. Sci., 47, No. 6: 813 (2012). Crossref
  23. V. M. Posuvailo, V. V. Kulyk, Z. A. Duriagina, I. V. Koval’chuck, M. M. Student, and B. D. Vasyliv, Arch. Mater. Sci. Eng., 105, No. 2: 49 (2020). Crossref
  24. O. Bulbuk, A. Velychkovych, V. Mazurenko, L. Ropyak, and T. Pryhorovska, Eng. Solid Mechanics, 7, No. 3: 193(2019). Crossref
  25. A. Velychkovych, L. Ropyak, and O. Dubei, Adv. Mater. Sci. Eng., 2021: 4517657 (2021). Crossref
  26. L. Y. Ropyak, A. S. Velychkovych, V. S. Vytvytskyi, and M. V. Shovkoplias, J. Physics: Conference Series, 1741, No. 1: 012039 (2021). Crossref
  27. L. Ya. Ropyak, M. V. Makoviichuk, I. P. Shatskyi, I. M. Pritula, L. O. Gryn, and V. O. Belyakovskyi, Funct. Mater., 27, No. 3: 638 (2020). Crossref
  28. V. S. Antonyuk, Sverkhtverdye Materialy, No. 4: 72 (1998).
  29. A. V. Buketov, N. A. Dolgov, A. A. Sapronov, and V. D. Nigalatii, Strength Mater., 50, No. 3: 425 (2018). Crossref
  30. Z. A. Duryahina, T. M. Kovbasyuk, S. A. Bespalov, and V. Y. Pidkova, Mater. Sci., 52, No. 1: 50 (2016). Crossref
  31. O. Y. Popadyuk, O. S. Malyshevska, L. Y. Ropyak, V. S. Vytvytskyi, and M. M. Droniak, Novosti Khirurgii, 27, No. 1: 16 (2019). Crossref
  32. V. S. Antonyuk, E. B. Soroka, B. A. Lyashenko, and A. V. Rutkovskii, Strength Mater., 39, No. 1: 99 (2007). Crossref
  33. S. I. Kryshtopa, D. Y. Petryna, I. M. Bogatchuk, I. B. Prun’ko, and V. M. Mel’nyk, Mater. Sci., 53, No. 3: 351 (2017). Crossref
  34. V. B. Tarelnyk, A. V. Paustovskii, Y. G. Tkachenko, E. V. Konoplianchenko, V. S. Martsynkovskyi, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 55, No. 9–10: 585 (2017). Crossref
  35. O. P. Gaponova, V. B. Tarelnyk, V. S. Martsynkovskyy, Ie. V. Konoplianchenko, V. I. Melnyk, V. M. Vlasovets, O. A. Sarzhanov, N. V. Tarelnyk, M. O. Mikulina, A. D. Polyvanyi, G. V. Kirik, and A. B. Batalova, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1121 (2021). Crossref
  36. O. P. Gaponova, B. Antoszewski, V. B. Tarelnyk, P. Kurp, O. M. Myslyvchenko, and N. V. Tarelnyk, Materials, 4, No. 21: 6332 (2021). Crossref
  37. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83 (2022). Crossref
  38. M. M. Student, H. V. Pokhmurs’ka, K. R. Zadorozhna, H. H. Veselivs’ka, V. M. Hvozdets’kyi, and Ya. Ya. Sirak, Mater. Sci., 54: 535 (2019). Crossref
  39. É. F. T. Olivio, P. S. Olivio Filho, L. A. de Aguiar, J. R. S. Moreno, and R. S. C. Paredes, Int. J. Adv. Manuf. Technol., 104, No. 9: 4559 (2019). Crossref
  40. B. Güney, Y. Dilay, M. M. Solomon, H. Gerengi, A. Özkan, and M. Yıldız, Corros. Rev., 40, Iss. 1: 51 (2021). Crossref
  41. O. V. Sukhova, PAST, No. 4: 77 (2020). Crossref
  42. M. S. Storozhenko, O. P. Umanskyi, G. A. Baglyuk, Yu. I. Evdokimenko, V. P. Brazhevskyi, O. O. Chernyshov, O. A. Bondarenko, I. S. Martsenyuk, V. B. Tarelnyk, O. Ye. Terentiev, and O. V. Melnyk, Powder Metall. Met. Ceram., 60: 1 (2021). Crossref
  43. A. Guzanova, M. Džupon, D. Draganovská, J. Brezinová, J. Viňáš, D. Cmorej, E. Janoško, and P. Maruschak, Acta Metall. Slovaca, 26, No. 2: 37 (2020). Crossref
  44. S. A. Luzan, A. I. Sidashenko, and A. S. Luzan, Metallofiz. Noveishie Tekhnol., 42, No. 4: 541 (2020). Crossref
  45. S. A. Luzan, A. I. Sidashenko, and A. S. Luzan, Weld. Int., 33, No. 7–9: 249 (2019). Crossref
  46. O. Volkov, S. Knyazev, A. Vasilchenko, and E. Doronin, Mater. Sci. Forum, 1038: 68 (2021). Crossref
  47. H. Postelnyk, O. Sobol, O. Chocholaty, and S. Knyazev, Advances in Design, Simulation and Manufacturing III (Eds. V. Ivanov, J. Trojanowska, I. Pavlenko, J. Zajac, and D. Peraković) (Springer: 2020), p. 532. Crossref
  48. I. O. Ryabtsev, A. A. Babinets, I. P. Lentyuhov, I. L. Bohaychuk, and A. V. Yevdokimov, Metallofiz. Noveishie Tekhnol., 43, No. 12: 1667 (2021). Crossref
  49. M. R. Chuchman, I. O. Ryabtsev, H. M. Krutsa, E. F. Perepl’otchykov, A. I. Dyachuk, and R. M. Yurkevych, Mater. Sci., 45, No. 5: 746 (2009). Crossref
  50. V. A. Tatarenko, S. M. Bokoch, V. M. Nadutov, T. M. Radchenko, and Y. B. Park, Defect Diffusion Forum, 280–281: 29 (2008). Crossref
  51. I. M. Melnyk, T. M. Radchenko, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010).
  52. L. S. Saakiyan, A. P. Efremov, L. Ya. Ropyak, and A. V.Gorbatskii, Mater. Sci., 23: 267 (1987). Crossref
  53. L. S. Saakiyan, A. P. Efremov, and L. Ya. Ropyak, Zashchita Metallov, 25, No. 2: 185 (1989).
  54. P. Szroeder, I. Y. Sagalianov, T. M. Radchenko, V. A. Tatarenko, Y. I. Prylutskyy, and W. Strupiński, Applied Surface Science, 442: 185 (2018). Crossref
  55. N. A. Dolgov and E. B. Soroka, Strength Mater., 36, No. 6: 636(2004). Crossref
  56. L. Ya. Ropyak, I. P. Shatskyi, and M. V. Makoviichuk, Metallofiz. Noveishie Tekhnol., 41, No. 5: 647 (2019). Crossref
  57. I. P. Shatskyi, V. V. Perepichka, and L. Y. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020). Crossref
  58. V. A. Shevchuk, J. Math. Sci., 184, No. 2: 215 (2012). Crossref
  59. R. M. Tatsii, O. Yu. Pazen, and S. Ya. Vovk, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, No. 1: 36 (2020). Crossref
  60. R. M. Tatsiy, O. Yu. Pazen, S. Ya. Vovk, and D. V. Kharyshyn, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, No. 1: 60 (2021). Crossref
  61. I. P. Shatskii, J. Appl. Mech. Tech. Phys., 30, No. 5: 828 (1989). Crossref
  62. I. P. Shats’kii, J. Sov. Math., 67, No. 5: 3355 (1993). Crossref
  63. S. Mohammadi, M. Yousefi, and M. Khazaei, J. Reinf. Plast. Compos., 40, No. 1–2: 3 (2021). Crossref
  64. I. P. Shatskyi, M. V. Makoviichuk, and A. B. Shcherbii, Shell Structures: Theory and Applications (CRC Press: 2017), p. 165. Crossref
  65. I. P. Shats’kyi, M. V. Makoviichuk, and A. B. Shcherbii, J. Math. Sci., 238, No. 2: 165 (2019). Crossref
  66. I. P. Shatskyi, M. V. Makoviichuk, and A. B. Shcherbii, Mater. Sci., 55, No. 4: 484 (2020). Crossref
  67. O. B. Melnick, V. K. Soolshenko, and K. H. Levchuk, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1387 (2020). Crossref
  68. K. H. Levchuk, T. M. Radchenko, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021). Crossref
  69. P. Prysyazhnyuk, L. Shlapak, O. Ivanov, S. Korniy, L. Lutsak, M. Burda, I. Hnatenko, and V. Yurkiv, Eastern-European J. Enterp. Technol., 4, No. 12: 46 (2020). Crossref
  70. P. Prysyazhnyuk, R. Bishchak, S. Korniy, M. Panchuk, and V.Kaspruk, CEUR Workshop Proc., 3039: 300 (2021).
  71. J. Viňáš, J. Brezinová, and M. Greš, Mater. Sci. Forum, 862: 33 (2016). Crossref
  72. A. C. Neves, J. R. Sartori Moreno, C. A. Corrêa, and E. F. Trevisani Olívio, Weld. Int., 35, No. 4–6: 158 (2021). Crossref
  73. M. Gucwa, J. Winczek, R. Bęczkowski, and M. Dośpiał, Arch. Foundry Eng., 6, No. 3: 39 (2016). Crossref
  74. B. Trembach, A. Grin, M. Turchanin, N. Makarenko, O. Markov, and I. Trembach, Int. J. Adv. Manuf. Technol., 114, No. 3: 1099 (2021). Crossref
  75. Y. Cao, J. T. Zhang, F. X. Yin, and X. H. Liu, Trans. Mater. Heat. Treat., 33, No. 7: 50 (2012).
  76. J. Zhang, J. Liu, H. Liao, M. Zeng, and S. Ma, J. Mater. Res. Technol., 8, No. 6: 6308 (2019). Crossref
  77. A. Rottger, J. Lentz, and W. Theisen, Mater. Des., 88: 420 (2015). Crossref
  78. S. Ma, J. Xing, G. Liu, D. Yi, H. Fu, J. Zhang, and Y. Li, Mater. Sci. Eng. A, 527, No. 26: 6800 (2010). Crossref
  79. E. V. Sukhova, East Eur. J. Phys., No. 2: 115 (2021).
  80. Y. Liu, B. Li, J. Li, L. He, S. Gao, and T.G. Nieh. Mater. Lett., 64, No. 11: 1299 (2010). Crossref
  81. E. Kocaman, B. Kılınç, Ş. Şen, and U. Şen, J. Alloys Compd., 900: 163478 (2022). Crossref
  82. O. V. Sukhova, Metallofiz. Noveishie Tekhnol., 43, No. 3: 355 (2021). Crossref
  83. Z. Ling, W. Chen, W. Xu, X. Zhang, T. Lu, and J. Liu, Materials, 12, No. 2: 256 (2019). Crossref
  84. B. Kılınç, E. Kocaman, Ş. Şen, and U. Şen, Mater. Charact., 179: 111324 (2021). Crossref
  85. N. Upadhyay, M. G. Pujar, C. R. Das, C. Mallika, and U. K. Mudali, Corrosion, 70: 781 (2014). Crossref
  86. D. Itzhak and P. Peled, Corros. Sci., 26, No. 1: 49 (1986). Crossref
  87. T. Ujiro, S. Satoh, R. W. Staehle, and W. H. Smyrl, Corros. Sci., 43, No. 11: 2185 (2001). Crossref
  88. Z. Ling, W. Chen, X. Yang, B. Li, and T. Lu, Mater. Res. Express, 6, No. 4: 046557 (2019). Crossref
  89. C. Zhang, K. Yamanaka, H. Bian, and A. Chiba, npj Mater. Degrad., 3: 30 (2019). Crossref
  90. K. Yamanaka, M. Mori, K. Yoshida, Y. Onuki, S. Sato, and A. Chiba, npj Mater. Degrad., 5, No. 1: 1 (2021). Crossref
  91. O. V. Sukhova, Phys. Chem. Solid State, 22, No. 1: 110 (2021). Crossref
  92. Y. Yi, J. Xing, M. Wan, L. Yu, Y. Lu, and Y. Jian, Mater. Sci. Eng. A, 708: 274 (2017). Crossref
  93. J. W. Yoo, S. H. Lee, C. S. Yoon, and S. J. Kim, J. Nucl. Mater., 352, No. 1–3: 90 (2006). Crossref
  94. B. Trembach, A. Grin, N. Makarenko, S. Zharikov, I. Trembach, and O. Markov, J. Mater. Res. Technol., 9, No. 5: 10520 (2020). Crossref
  95. P. Henckell, M. Gierth, Y. Ali, J. Reimann, and J. P. Bergmann, Materials, 13, No. 11: 2491 (2020). Crossref
  96. L. Zhang, G. Okudan, A.-D.-C. Basantes-Defaz, R. M. Gneiting, S. Subramaniam, D. Ozevin, and E. Indacochea, Materials, 13, No. 10: 2307 (2020). Crossref
  97. B. Trembach, A. Grin, V. Subbotina, V. Vynar, S. Knyazev, V. Zakiev, I. Trembach, and O. Kabatskyi, Tribology in Industry, 43, No. 3: 452 (2021). Crossref
  98. M. G. Fontana, Corrosion Engineering (McGraw-Hill: 1986).
  99. D. Féron, Corrosion Behaviour and Protection of Copper and Aluminium Alloys in Seawater (CRC Press: 2007), p. 195. Crossref
  100. R. Singh, Corrosion Control for Offshore Structures. Cathodic Protection and High-Efficiency Coating (Gulf Professional Publishing: 2014).
  101. B. Lu, J. Luo, and S. Chiovelli, Metall. Mater. Trans. A, 37: 3029 (2006). Crossref
  102. V. Chaker, Corrosion Forms and Control for Infrastructure (Philadelphia: ASTM: 1992). Crossref
  103. Y. Huang and J. Zhang, Materials Corrosion and Protection (Berlin: De Gruyter: 2018). Crossref
  104. M. Mobin and H. Shabnam, J. Minerals Materials Characterization and Eng., 9, No. 12: 1113. (2010). Crossref
  105. Y. Li, X. D. Xu, Y. H. Hou, C. Zhang, F. L. Wang, K. Omura, Y. Koizumi, and A. Chiba, Corros. Sci., 98: 119 (2015). Crossref
  106. B. Yang, C. Shi, J. Teng, X. Gong, X. Ye, Y. Li, Q. Lei, and Y. Nie, J. Alloys Comp., 791: 215 (2019). Crossref