Surface Morphology and Properties of the Surface Layer of AA6111 Aluminium Alloy Treated by a Pulsed Beam of Relativistic Electrons

V. V. Bryukhovetsky$^{1}$, V. F. Klepikov$^{1}$, V. V. Lytvynenko$^{1}$, D. Ye. Myla$^{1,2}$, S. I. Petrushenko$^{2}$, V. A. Bychko$^{3}$, Yu. F. Lonin$^{4}$, A. H. Ponomarev$^{4}$

$^{1}$Институт электрофизики и радиационных технологий НАН Украины, ул. Чернышевского, 28, 61002 Харьков, Украина
$^{2}$Харьковский национальный университет имени В. Н. Каразина, пл. Свободы, 4, 61022 Харьков, Украина
$^{3}$Национальный университет «Черниговская политехника», ул. Шевченко, 95, 14035 Чернигов, Украина
$^{4}$Национальный научный центр «Харьковский физико-технический институт» НАН Украины, ул. Академическая, 1, 61108 Харьков, Украина

Получена: 25.01.2022. Скачать: PDF

The surface morphology and properties of the microstructure of the surface layer of aluminium alloy 6111 irradiated by a pulsed beam of relativistic electrons are studied. Intense thermal heating, which is created by the electron beam, melts the surface layer of the alloy. A surface layer with a modified sub-microcrystalline grain microstructure is formed as a result of the ultra-fast melt solidification. The effect of the pulsed electron beam is accompanied by the formation of a developed surface relief with micro-cracks and craters. The surface profile has a wavelike type with hemispherical protrusions. The strength and plasticity of the surface layer modified by the pulsed electron beam are determined according to the micro-hardness data.

Ключевые слова: pulsed beam of relativistic electrons, aluminium alloy, micro-cracks, craters.

URL: https://mfint.imp.kiev.ua/ru/abstract/v44/i04/0515.html

PACS: 29.25.Bx, 61.46.−w, 61.80.Fe, 62.20.−x, 68.37.Hk


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. D. I. Proscurovsky and A. D. Pogrebnjak, phys. status solidi (a), 145, No. 1: 9 (1994). Crossref
  2. V. V. Bryukhovetsky, V. F. Klepikov, V. V. Lytvynenko, D. E. Myla, V. P. Poyda, A. V. Poyda, V. T. Uvarov, Yu. F. Lonin, and A. G. Ponomarev, Nuclear Inst. and Methods in Physics Research B, 499: 25 (2021). Crossref
  3. V. V. Bryukhovetsky, V. V. Lytvynenko, D. E. Myla, V. A. Bychko, Yu. F. Lonin, A. G. Ponomarev, and V. T. Uvarov, Physics and Chemistry of Solid State, 22, No. 4: 655 (2021). Crossref
  4. Y. Hao, B. Gao, G. F. Tu, S. W. Li, C. Dong, and Z. G. Zhang, Nuclear Instruments and Methods in Physics Research B, 269: 1499 (2011). Crossref
  5. B. Gao, S. Hao, J. Zou, W. Wu, G. Tu, and C. Dong, Surf. Coatings Technology, 201: 6297 (2007). Crossref
  6. D. E. Myla, V. V. Bryukhovetsky, V. V. Lytvynenko, V. P. Poyda, A. V. Poyda, V. F. Klepikov, V. T. Uvarov, Yu. F. Lonin, and А. G. Ponomarev, Problems of Atomic Science and Technology, No. 2 (126): 33 (2020). Crossref
  7. Y. Qin, C. Dong, Z. Song, S. Hao, X. Me, J. Li, X. Wang, J. Zou, and Th. Grosdidier, J. Vacuum Science and Technology A, 27, Iss. 3: 430 (2009). Crossref
  8. V. V. Bryukhovetsky, A. V. Poyda, V. P. Poyda, and D. E. Milaya, Problems of Atomic Science and Technology, No. 2 (120): 67 (2019). Crossref
  9. V. V. Bryukhovetskiy, N. I. Bazaleev, V. F. Klepikov, V. V. Litvinenko, O. E. Bryukhovetskaya, E. M. Prokhorenko, V. T. Uvarov, and A. G. Ponomar’ov, Problems of Atomic Science and Technology, No. 2 (72): 28 (2011).
  10. V. V. Bryukhovetsky, V. V. Lytvynenko, D. E. Myla, Yu. F. Lonin, A. G. Ponomarev, and V. T. Uvarov, J. Nano- and Electronic Physics, 13, No. 6: 06025 (2021). Crossref
  11. V. B. Tarel’nik, V. S. Martsinkovskii, and A. N. Zhukov, Chemical and Petroleum Engineering, 53, No. 1–2: 114 (2017). Crossref
  12. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, I. Konoplianchenko, A. Belous, V. Gerasimenko, and M. Zakharov, IOP Conference Series: Materials Science and Engineering, 233, No. 1: 012048 (2017). Crossref
  13. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng. A, 280: 37 (2000). Crossref
  14. P. E. Fortin, M. J. Bull, and D. M. Moore, SAE International Congress Exposition: 830096 (1983). Crossref
  15. S. Esmaeili, X. Wang, D. J. Lloyd, and W. J. Poole, Metall Mater. Trans. A, 34: 751 (2003). Crossref
  16. В. В. Брюховецкий, В. П. Пойда, А. В. Пойда, Д. Р. Аврамец, Р. И. Кузнецова, А. П. Крышталь, А. Л. Самсонник, К. А. Махмуд, Металлофиз. новейшие технол., 31, № 9: 1289 (2009).
  17. D. Zaguliaev, Y. Ivanov, S. Konovalov, V. Shlyarov, D. Yakupov, and A. Leonov, Nuclear Instruments and Methods in Physics Research B: 488: 23 (2021). Crossref
  18. S. Hao, P. Wu, J. Zou, T. Grosdidier, and C. Dong, Appl. Surf. Sci., 253: 5349 (2007). Crossref
  19. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, J. Appl. Phys., 92, No. 3: 1649 (2002). Crossref
  20. А. В. Пойда, В. В. Брюховецкий, Д. Л. Воронов, Р. И. Кузнецова, В. Ф. Клепиков, Металлофиз. новейшие технол., 27, № 3: 319 (2005).
  21. Y. Qin, Ch. Dong, X. Wang, Sh. Hao, A. Wu, J. Zou, and Y. Liu, J. Vacuum Science Technology A, 21: 1934 (2003). Crossref
  22. K. M. Zhang, J. X. Zou, T. Grosdidier, and C. Dong, J. Vacuum Science Technology A, 27: 1217 (2009). Crossref
  23. J. X. Zou, T. Grosdidier, K. M. Zhang, and C. Dong, Acta Mater., 54: 5409 (2006). Crossref
  24. H. Zhong, J. Zhang, J. Shen, G. Liang, S. Zhang, M. Xu, X. Yu, S. Yan, G. E. Remnev, and X. Le, Vacuum, 179: 109541 (2020). Crossref
  25. O. R. Myhr, Ø. Grong, and S. J. Andersen, Acta Mater., 49, No. 1: 65 (2001). Crossref
  26. Yu. V. Milman, B. A. Galanov, and S. I. Chugunova, Acta Met. Mater., 41, No. 9: 2523 (1993). Crossref