Electrical and Magnetic Properties of Polymeric Nanocomposites Based on Nickel Ferrites Modified by Copper Sulphide

R. V. Mazurenko, S. L. Prokopenko, G. M. Gunja, L. P. Storozhuk, S. M. Makhno, P. P. Gorbyk

Институт химии поверхности им. А. А. Чуйко НАН Украины, ул. Генерала Наумова, 17, 03164 Киев, Украина

Получена: 16.12.2021; окончательный вариант - 04.08.2022. Скачать: PDF

Nanosize nickel ferrite was synthesized by the sol–gel autocombustion method. The surface of nickel ferrite was modified by copper sulphide with the volume fractions from 0.2 to 0.42. For the CuS/NiFe$_{2}$O$_{4}$ composites the values of complex permittivity and permeability in the microwave range, values of conductivity at low frequencies and magnetic characteristics were investigated. Polymer composites CuS/NiFe$_{2}$O$_{4}$–polychlorotrifluoroethylene (PCTFE) were obtained by hot pressing technique. With an increase in the content of copper sulphide of polymer composites, an increase in the values of the complex dielectric constant in the microwave range of 2–3 times was observed. The values of electrical conductivity for the 0.2CuS/NiFe$_{2}$O$_{4}$–PCTFE system are 4–5 orders of magnitude lower than for the 0.42CuS/NiFe$_{2}$O$_{4}$–PCTFE system with an increase in the concentration of copper sulphide in polymer composites. The change in the ratio of the conducting and magnetic components in the studied system makes it possible composites with adjustable permittivity and permeability in the microwave range.

Ключевые слова: polymer nanocomposite, nickel ferrite, copper sulphide, complex permittivity, complex permeability, specific magnetization.

URL: https://mfint.imp.kiev.ua/ru/abstract/v44/i09/1179.html

PACS: 61.46.-w, 72.80.Tm, 75.50.Gg, 75.75.+a, 77.22.Ch, 81.07.Bc


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. D. Wanasinghe, F. Aslani, G. Ma, and D. Habibi, Construction and Building Materials, 231: 117116 (2020). Crossref
  2. M. Green and X. Chen, Journal of Materiomics, 5, Iss. 4: 503 (2019). Crossref
  3. L. Li, S. Liu, and L. Longfei, J. Alloy Compd., 722: 158 (2017). Crossref
  4. E. Ghashghaei, S. Kheirjou, S. Asgari, and H. Kazerooni, C. R. Chimie, 21, Iss. 9: 862 (2018). Crossref
  5. H. Yang, T. Ye, Y. Lin, J. Zhu, and F. Wang, J. Alloys Compd., 683: 567 (2016). Crossref
  6. J. Xue, H. Zhang, J. Zhao X. Ou, and Y. Ling, J. Magn. Magn. Mat., 514: 167168 (2020). Crossref
  7. K. Egizbek, A.L. Kozlovskiy, K. Ludzik, M. V. Zdorovets, I. V. Korolkov, B. Marciniak, M. Jazdzewska, D. Chudoba, A. Nazarova, and R. Kontek, Ceramics International, 46, Iss. 10: 16548 (2020). Crossref
  8. P. Liu, Y. Huang, and X. Sun, Mater. Lett., 112: 117 (2013). Crossref
  9. J. Tang, K. Wang, Y. Lu, N. Liang, X. Qin, G. Tian, D. Zhang S. Feng, and H. Yue, J. Magn. Magn. Mat., 514: 167268 (2020). Crossref
  10. H. Tammareddy. K. Ramji, P. Siva Naga Sree, and B. V. S. R. N. Santhosi, Materials Today: Proceedings, 18, Part 1: 420 (2019). Crossref
  11. J. Liao, J. Qiu, G. Wang, R. Du, N. Tsidaeva, and W. Wang, J. Colloid Interface Sci., 604: 537 (2021). Crossref
  12. Y. K. Hsu, Y. C. Chen, and Y. G. Lin, Electrochim. Acta, 139: 401 (2014). Crossref
  13. Y. Wang, X. Zhang, P. Chen, H. Liao, and S. Cheng, Electrochim. Acta, 80: 264 (2012). Crossref
  14. X. Sun, M. Sui, G. Cui, L. Li, X. Li, X. Lv, F. Wu, and G. Gu, RSC Adv., 13: 17489 (2018). Crossref
  15. Y. Wang, X. Gao, X. Wu, W. Zhang, Q. Wang, and C. Luo, Ceramics International, 44, Iss. 8: 9816 (2018). Crossref
  16. J. Sun, Y. Shen, and X.-S. Hu, Polym. Bull., 75: 653 (2018). Crossref
  17. Y. Wang, X. Gao, W. Zhang, C. Luo, L. Zhang, and P. Xue, J. Alloys Compd., 757: 372 (2018). Crossref
  18. R. S. Yadav, I. Kuritka, J. Vilcáková, M. Machovský, D. Škoda, P. Urbánek, M. Masar, M. Goralik, M. Urbánek, L. Kalina, and J. Havlica, Nanomaterials, 9, Iss. 4: 621 (2019). Crossref
  19. S. Ebnesajjad, Fluoroplastics Volume 1: Non-Melt Processible Fluoropolymers—The Definitive User's Guide and Data Book (2nd Edition, eBook ISBN: 9781455732005 William Andrew Publishing: 2015), p. 718.
  20. B. Xu, T. Ding, Y. Zhang, Y. Wen, Z. Yang, and M. Zhang, Mater. Lett., 187: 123 (2017). Crossref
  21. L. N. Ganiuk, V. D. Ignatkov, S. N. Makhno, and P. N. Soroka, Ukr. Phys. J., 40: 627 (1995) (in Russian).
  22. L. P. Pavlov, Methods for Measuring the Parameters of Semiconductor Materials (Moscow: Vysshaya Shkola: 1987) (in Russian).
  23. A. Guinier, Rentgenografiya Kristallov [X-ray Crystallography] (Moscow: Gos. Izd-vo Fiz.-Mat. Lit: 1961) (in Russian).
  24. P. Scardi, M. Leoni, and R. Delhez, J. Appl. Crystallogr., 37: 381 (2004). Crossref
  25. S. Foner, Rev. Sci. Instrum., 30: 548 (1959). Crossref
  26. A. L. Petranovska, N. V. Abramov, S. P. Turanska, P. P. Gorbyk, A. N. Kaminskiy, and N. V. Kusyak, J. Nanostruct. Chem., 5: 275 (2015). Crossref
  27. J. G. Dunn and C. Muzenda, Thermochimica Acta, 369: 117 (2001). Crossref
  28. C. M. Simonescu, V. S. Teodorescu, O. Carp, L. Patron, and C. Capatina, J. Therm. Anal. Calorim., 88, Iss. 1: 71 (2007). Crossref
  29. N. D. Topor, L. P. Ogorodova, and L. V. Melchakova, Thermal Analysis of Minerals and Inorganic Compounds (Moscow: Publishing house of Moscow State University: 1987) (in Russian).
  30. E. I. Nefyodov and S. M. Smolskiy, Understanding of Electrodynamics, Radio Wave Propagation and Antennas (Scientific Research Publishing: Inc. USA: 2013).
  31. Y. Mamunya, L. Matzui, L. Vovchenko, O. Maruzhenko, V. Oliynyk, S. Pusz, B. Kumanek, and U. Szeluga, Composites Science and Technology, 170: 51 (2019). Crossref
  32. R. V. Mazurenko, S. L. Prokopenko, M. V. Abramov, G. M. Gunja, S. M. Makhno, and P. P. Gorbyk, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 1: 111 (2021).
  33. S. L. Prokopenko, R. V. Mazurenko, G. M. Gunja, N. V. Abramov, S. M. Makhno, and P. P. Gorbyk, J. Magn. Magn. Mat., 494: 165824 (2020). Crossref
  34. R. V. Mazurenko, P. P. Gorbik, G. M. Gunya, and S. N. Makhno, Physics and Chemistry of Solid State, 17, No. 4: 482 (2016). Crossref
  35. R. D. Zysler, M. Vasquez-Mansilla, C. Arciprete, M. Dimitrijewits, D. Rodriguez-Sierra, and C. Saragovi, J. Magn. Magn. Mat., 224: 39 (2001). Crossref
  36. N. V. Abramov, S. P. Turanska, A. P. Kusyak, A. L. Petranovska, and P. P. Gorbyk, J. Nanostruct. Chem., 6: 223 (2016). Crossref
  37. L. Lv, J.-P. Zhou, Q. Liu, G. Zhu, X.-Z. Chen, X.-B. Bian, and P. Liu, Phys. E: Low-Dimens. Syst. Nanostructures, 43, Iss. 10: 1798 (2011). Crossref