Influence of Protective Nanocomposite Coatings on State of Thermal and Strain Fields in Cutting Plate

D. A. Belous, A. Yu. Badalian, A. A. Goncharov, O. V. Khomenko, S. A. Goncharova

Сумский государственный университет, ул. Римского-Корсакова, 2, 40007 Сумы, Украина

Получена: 14.08.2022; окончательный вариант - 23.09.2022. Скачать: PDF

The paper presents the results of the study of the influence of thermal fields on the deformation processes occurring in the surface layers of the cutting tool in the cutting zone. The proposed friction model takes into account the structural and phase composition of the coating material, deformation processes in the coating and emerging stresses under the influence of temperature flow in the contact area. The thermodynamic influence on the physical and mechanical characteristics of the coating was studied by the phase plane method through analytical research and construction of phase portraits by numerical integration of the corresponding system of differential equations using the Runge–Kutta algorithm. An analysis of Lyapunov indices for special points of the system was carried out, conclusions were drawn regarding the characteristics of the behavior of the ‘dynamic stress-strain’ system for tool surfaces with and without coating.

Ключевые слова: multilayer coating, deformation processes, shear strain, temperature field, friction zone, tribological contact.

URL: https://mfint.imp.kiev.ua/ru/abstract/v44/i11/1495.html

PACS: 62.20.Qp, 68.35.Gy, 68.55.J-, 68.55.Nq, 68.60.Bs, 81.05.Je


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. A. D. Pogrebnjak, V. N. Borisyuk, and A. A. Bagdasaryan, Condens. Matter Phys., 16, No. 3: 33803 (2013). Crossref
  2. A. D. Pogrebnjak and V. M. Beresnev, Nanocomposites—New Trends and Developments (Ed. Farzad Ebrahimi) (2012), p. 123. Crossref
  3. M. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna, and A. Pogrebnjak, Nanomaterials, 11, No. 12: 3412 (2021). Crossref
  4. W. Grzesik, J. Mach. Eng., 20: 24 (2020). Crossref
  5. Sh. N. Melkote, W. Grzesik, J. Outeiro, J. Rech, V. Schulze, H. Attia, P.-J. Arrazola, R. M’Saoubi, and C. Saldana, CIRP Annals, 66, No. 2: 731 (2017). Crossref
  6. А. Д. Погребняк, М. А. Лисовенко, А. Турлыбекулы, В. В. Буранич, УФН, 191: 262 (2021). Crossref
  7. J. Zhang and Z. Liu, Int. J. Adv. Manuf. Technol., 91: 59 (2017). Crossref
  8. A. D. Pogrebnjak, A. A. Bagdasaryan, I. V. Yakushchenko, and V. M. Beresnev, Russ. Chem. Rev., 83, No. 11: 1027 (2014). Crossref
  9. В. М. Береснев, А. Д. Погребняк, Н. А. Азаренков, В. И. Фареник, Г. В. Кирик, PSE, 5, № 1–2: 4 (2007).
  10. P. K. Huang and J. W. Yeh, Surf. Coat. Technol., 203, No. 13: 1891 (2009). Crossref
  11. V. V. Uglov, V. M. Anishchik, S. V. Zlotski, and G. Abadias, Surf. Coat. Technol., 200, Nos. 22–23: 6389 (2006). Crossref
  12. A. Raveh, I. Zukerman, R. Shneck, R. Avni, and I. Fried, Surf. Coat. Technol., 201: 6136 (2007). Crossref
  13. S. Veprek and M. J. G. Veprek-Heijman, Surf. Coat. Technol., 202: 5063 (2008). Crossref
  14. А. Д. Погребняк, А. А. Гончаров, Металлофиз. новейшие технол., 38, № 9: 1145 (2016). Crossref
  15. О. А. Гончаров, Д. О. Білоус, А. М. Юнда, О. В. Хоменко, Є. В. Міроненко, Л. В. Васильєва, С. А. Гончарова, Наносистеми, наноматеріали, нанотехнології, 20, 2: 385 (2022).
  16. B. Haddag, S. Atlati, M. Nouari, and M. Zenasni, Heat Mass Transfer, 51: 1355 (2015). Crossref
  17. B. Wang, Z. Liu, X. Hou, and J. Zhao, Materials (Basel, Switzerland), 11, No. 4: 461 (2018). Crossref
  18. W. Zhang, J. Weng, and K. Zhuang, Int. J. Adv. Manuf. Technol., 118: 2105 (2022). Crossref
  19. D. Ulutan and T. Özel, J. Mater. Processing Technol., 213: 2217 (2013). Crossref
  20. W. Grzesik, J. Rech, and K. Żak, Wear, 317, Nos. 1–2: 8 (2014). Crossref
  21. A. Goncharov, A. Yunda, E. Mironenko, D. Belous, and L. Vasilyeva, High Temp. Mater. Process., 22: 279 (2018). Crossref
  22. A. Goncharov, A. Yunda, E. Mironenko, L. Vasilyeva, and D. Belous, High Temp. Mater. Process., 24: 81 (2020). Crossref
  23. W. Grzesik, M. Bartoszuk, and P. Nieslony, J. Mater. Processing Technol., 164–165: 1204 (2005). Crossref
  24. I. V. Kragelsky, M. N. Dobychin, and V. S. Kombalov, Friction and Wear: Calculation Methods (Pergamon: Elsevier: 2013).
  25. Y. Guo, C. Saldana, W. D. Compton, and S. Chandrasekar, Acta Mater., 59, No. 11: 4538 (2011). Crossref
  26. S. Lee, J. Hwang, and M. R. Shankar, Metall. Mater. Trans. A, 37: 1633 (2006). Crossref
  27. T. Brown, C. Saldana, T. G. Murthy, J. B. Mann, Y. G. L. F. Allard, A. H. King, W. D. Compton, K. P. Trumble, and S. Chandrasekar, Acta Mater., 57, No. 18: 5491 (2009). Crossref
  28. C. Huang, T.G. Murthy, M.R. Shankar, R. M’Saoubi, and S. Chandrasekar, Scr. Mater., 58, No. 8: 663 (2008). Crossref
  29. L. A. Denguir, J. C. Outeiro, G. Fromentin, V. Vignal, and R. Besnard, Procedia CIRP, 46: 238 (2016). Crossref
  30. S. Melkote, W. Grzesik, J. Outeiro, J. Rech, and V. Schulze, CIRP Annals – Manufacturing Technology, 66, No. 2: 731 (2017). Crossref
  31. H. Mecking and U. F. Kocks, Acta Metall., 29, No. 11: 1865 (1981). Crossref
  32. N. Maharjan, W. Zhou, and N. Wu, Surf. Coat. Technol., 385: 125399 (2020). Crossref
  33. А. А. Гончаров, С. Н. Дуб, А. В. Агулов, В. В. Петухов, Сверхтвердые материалы, 6: 76 (2015).
  34. Г. Хакен, Синергетика (Москва: Мир: 1980). Crossref
  35. A. В. Хоменко, Д. С. Трощенко, Л. С. Метлов, П. Е. Трофименко, Наносистеми, наноматеріали, нанотехнології, 15, № 2: 203 (2017).
  36. A. V. Khomenko and I. A. Lyashenko, J. Phys. Studies, 11, No. 3: 268 (2007). Crossref
  37. A. V. Khomenko and I. A. Lyashenko, Fluctuation and Noise Letters, 7, No. 2: 111 (2007). Crossref
  38. O. Mazur, K.-I. Tozaki, Y. Yoshimura, and L. Stefanovich, Physica A: Statistical Mechanics and Its Applications, 599: 127436 (2022). Crossref
  39. A. Khomenko, M. Khomenko, B. Persson, and K. Khomenko, Tribology Letters, 65, No. 2: 71 (2017). Crossref
  40. Б. М. Мордюк, О. О. Мікосянчик, Р. Г. Мнацаканов, Металлофиз. новейшие технол., 42, № 2: 175 (2020). Crossref