Effect of Predeformation in the Microplasticity Interval on the Strength Characteristics of Superplastic Eutectic Bi–43% wt. Sn Alloy

V. F. Korshak

Харьковский национальный университет имени В. Н. Каразина, пл. Свободы, 4, 61022 Харьков, Украина

Получена: 27.12.2022; окончательный вариант - 05.02.2023. Скачать: PDF

The changes of strength properties of superplastic eutectic Bi–43% wt. Sn alloy, caused by repeated tension in the interval of microplastic deformation, are studied. Mechanical tests are carried out in the active loading mode. Relative elongations of the samples did not exceed 3$\cdot10^{-3}. The experiments are carried out using the tensometric method of measurements at room temperature. The loading conditions are adapted to the conditions for the alloy to exhibit the superplasticity effect, which are established in separate experiments. The studied alloy is obtained in laboratory conditions by casting on a massive copper substrate. The ingots are compressed on a hydraulic press by $\approx$ 70% immediately after casting and then aged for 12 days. The dependence of the stress $\sigma$ on the relative elongation $\varepsilon$ indicates the weakening of the studied alloy as a result of repetitive microplastic deformation and subsequent exposure of the samples in the unloaded state. During exposure after unloading, inelastic compression of the samples is observed. This reveals the presence of internal stresses in the material, the value of which is sufficient for its plastic flow. It is assumed that the occurrence of such stresses is associated, in particular, with the presence of the supersaturated $\alpha$(Sn)-phase in the structure of the alloy, which is formed under conditions of rapid crystallization. With the help of theoretical calculations, it is shown that the decomposition of this phase during the transition of the alloy to a phase state equilibrium at lower temperatures compared to the eutectic temperature is accompanied by an increase in the specific volume of the material. This transformation is prevented by the rigid framework of $\beta$(Bi)-phase grains, which occurs during crystallization. The action of external mechanical tensile stress causes the relaxation of internal stresses and the occurrence of the initial stages of decomposition of the supersaturated solid solution based on tin, accompanied by a decrease in the strength of the alloy.

Ключевые слова: superplasticity, strength, phase transformations, internal stresses, eutectic alloy, repeated loading.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i02/0251.html

PACS: 61.66.Dk, 62.20.Fe, 62.20.fq, 62.40.+I, 81.16.Rf, 81.30.Mh


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. В. Ф. Коршак, Р. І. Воронцова, Ю. І. Бойко, Металлофиз. новейшие тех-нол.,43, № 3: 339 (2021). Crossref
  2. В. M. Aржавитин, В. Ф. Коршак, Металлофиз. новейшие технол., 23, № 11: 1525 (2001).
  3. В. M. Aржавитин, В. Ф. Коршак, А. Ф. Сиренко, Физ. мет. металловед., 94, № 3: 80 (2002).
  4. В. М. Аржавитин, В. Ф. Коршак, Физ. мет. металловед., 97, № 1: 96 (2004).
  5. В. Ф. Коршак, В. М. Аржавитин, А. Л. Самсоник, П. В. Матейченко, Изв. РАН. Сер. физ., 69, № 9: 1374 (2005).
  6. В. Ф. Коршак, В. М. Аржавитин, Физ. мет. металловед., 100, № 4: 96 (2005).
  7. В. Ф. Коршак, П. В. Матейченко, Ю. А. Шаповалов, Физ. мет. металловед., 115, № 12: 1318 (2014). Crossref
  8. В. С. Золотаревский, Механические свойства металлов (Москва: Металлу-ргия: 1983).
  9. Н. А. Смоланов, Н. Е. Фомин, 3-я Всесоюзная научная конференция «Зако-номерности формирования структуры сплавов эвтектического типа» (Днепропетровск: 1986), с.190.
  10. В. Ф. Коршак, Металлофиз. новейшие технол., 39, № 6: 839 (2017).
  11. Ю. Н. Таран, И. С. Мирошниченко, Рост и дефекты металлических крис-таллов (Киев: Наукова думка: 1972).
  12. Р. И. Кузнецова, О. А. Кайбышев, Докл. АН СССР, 257, № 4: 863 (1981).
  13. М. Хансен, К. Андерко, Структуры двойных сплавов (Москва: Металлур-гиздат: 1962).
  14. J. A. Lee and G. V. Raynor, Proc. Phys. Soc. B, 67: 737 (1954). Crossref
  15. Г. В. Самсонов, Свойства элементов. Ч. 1.Физические свойства (Москва: Металлургия: 1976).