Non-Vacuum Design of СuGa$_{x}$In$_{1-x}$Se$_{2}$ Films for Solar Energy Applications

S. S. Kovachov$^{1}$, K. M. Tikhovod$^{1}$, M. V. Kalenyk$^{2}$, I. T. Bohdanov$^{1}$, Ya. O. Sychikova$^{1}$

$^{1}$Бердянский государственный педагогический университет, ул. Шмидта, 4, 71100 Бердянск, Украина
$^{2}$Сумский государственный педагогический университет им. А.С. Макаренко, ул. Роменская, 87, 40002 Сумы, Украина

Получена: 15.02.2023; окончательный вариант - 28.02.2023. Скачать: PDF

The study reports on a non-vacuum synthesis method for СuGa$_{x}$In$_{1-x}$Se$_{2}$ films for solar energy applications. The films are formed by pulverising chlorides of indium, gallium, and cuprum with selenious acid. To optimise the blend composition of films, it is proposed to age the obtained structure in a sodium chloride solution and to carry out additional selenization of the surface in a diffusion furnace. The resulting layers are investigated using SEM, EDX, XRD, and Raman methods. As determined, the film is a polycrystalline structure of chalcopyrite СuGa$_{0.6}$In$_{0.4}$Se$_{2}$ with agglomerates of porous crystallites. Secondary phases are not detected. The proposed method does not require a vacuum, and it is simple and inexpensive that opens the prospect of using it on an industrial scale for the synthesis of СuGa$_{x}$In$_{1-x}$Se$_{2}$ metal films.

Ключевые слова: pulverising, chalcopyrite, thin films, solar batteries, selenides, copper.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i05/0593.html

PACS: 61.05.cp, 68.37.Hk, 78.30.-j, 81.15.Cd, 82.80.Pv, 88.40.fh, 88.40.jn


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. F. Proise, F. Pardo, A. L. Joudrier, C. Njel, J. Alvarez, A. Delamarre, and J. L. Pelouard, Simulation, and Photonic Engineering of Photovoltaic Devices III, 8981: 240 (2014).
  2. S. Wang, Z. Zhou, B. Li, C. Wang, and Q. Liu, Mater. Today Nano, 16: 100142 (2021). Crossref
  3. Y. Suchikova, East-Eur. J. Enterp. Technol., 6, No. 5: 26 (2016).
  4. A. Usseinov, Z. Koishybayeva, A. Platonenko, J. Purans, and A. I. Popov, Materials, 14, Iss. 23: 7384 (2021). Crossref
  5. A. Usseinov, Z. Koishybayeva, A. Platonenko, Y. Suchikova, and A. I. Popov, Latvian Journal of Physics and Technical Sciences, 58, Iss. 2: 3 (2021). Crossref
  6. S. Yana, Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (Springer: 2016), p. 1299.
  7. J. A. Suchikova, V. V. Kidalov, and G. A. Sukach, ECS Transactions, 25, No. 24: 59 (2009). Crossref
  8. T. Hidouri, H. Saidi, S. Nasr, I. Guizani, N. Ameur, F. Saidi, and H. Y. Zahran, J. Electron. Mater., 51: 3521 (2022). Crossref
  9. M. N. Hasan, Y. Zheng, J. Lai, E. Swinnich, O. G. Licata, M. A. Baboli, and J. H. Seo, Adv. Mater. Interfaces, 9, Iss. 13: 2101531 (2022). Crossref
  10. Y. Suchikova, S. Kovachov, A. Lazarenko, and I. Bohdanov, Applied Surface Science Advances, 12: 100327 (2022). Crossref
  11. Y. Suchikova, S. Vambol, V. Vambol, N. Mozaffari, and N. Mozaffari, J. Achievements in Materials and Manufacturing Engineering, 92, Iss. 1–2: 19 (2019). Crossref
  12. A. Mangababu, R. S. P.Goud, C. Byram, J. Rathod, D. Banerjee, V. R. Soma, and S. N. Rao, Appl. Surf. Sci., 589: 152802 (2022). Crossref
  13. Y. A. Suchikova, V. V. Kidalov, and G. A. Sukach, J. Nano- Electron. Phys., 2, No. 4: 75 (2010).
  14. S. O. Vambol, I. T. Bohdanov, V. V. Vambol, T. P. Nestorenko, and S. V. Onyschenko, J. Nano- Electron. Phys., 9, No. 6: 06016 (2017). Crossref
  15. V. J. Gómez, M. Marnauza, K. A.Dick, and S. Lehmann, Nanoscale Adv., 4: 3330 (2022). Crossref
  16. M. Niu, K. Sui, X. Wu, D. Cao, and C. Liu, Adv. Compos. Hybrid Mater., 5: 450 (2022). Crossref
  17. Y. Suchikova, S. Kovachov, and I. Bohdanov, Nanomater. Nanotechnol., No. 12 (2022). Crossref
  18. H. Ren, M. Wang, Z. Li, F. Laffir, G. Brennan, Y. Sun, and K. M. Ryan, Chem. Mater., 31, No. 24: 10085 (2019). Crossref
  19. J. Du, R. Singh, I. Fedin, A. S. Fuhr, and V. I. Klimov, Nat. Energy, 55: 409 (2020).
  20. R. Carron, S. Nishiwaki, T. Feurer, R. Hertwig, E. Avancini, J. Löckinger, and A. N. Tiwari, Adv. Energy Mater., 9, Iss. 24: 1900408 (2019). Crossref
  21. G. Birant, J. de Wild, M. Meuris, J. Poortmans, and B. Vermang, Appl. Sci., 9: 677 (2019). Crossref
  22. Q. Han, Y. T. Hsieh, L. Meng, J. L. Wu, P. Sun, E. P. Yao, and Y. Yang, Science, 361: 904 (2018). Crossref
  23. M. Jošt, T. Bertram, D. Koushik, J. A. Marquez, M. A. Verheijen, M. D. Heinemann, and S. Albrecht, ACS Energy Lett., 4, No. 2: 583 (2019). Crossref
  24. Y. Zhao, S. Yuan, Q. Chang, Z. Zhou, D. Kou, W. Zhou, and S. Wu, Adv. Funct. Mater., 31, No. 10: 2007928 (2021). Crossref
  25. Y. H. Chang, R. Carron, M. Ochoa, A. N. Tiwari, J. R. Durrant, and L. Steier, Adv. Funct. Mater., 31, Iss. 40: 2103663 (2021). Crossref
  26. L. Miaomiao, C. Fanggao, L. Chao, X. Cunjun, W. Tianxing, and W. Jihao, Procedia Eng., 27: 12 (2012).
  27. J. Lindahl, U. Zimmermann, and P. Szaniawski, IEEE Journal of Photovoltaics, 3, Iss. 3:1100 (2013). Crossref
  28. M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, Thin Solid Films, 516, Iss. 20: 6848 (2008). Crossref
  29. Y. Zhao, H. Li, and Y. Zhu, Nanoscale Res. Lett., 9: 650 (2014). Crossref
  30. Y. Suchikova, A. Lazarenko, S. Kovachov, Z. Karipbaev, and A. I. Popov, TCSET 2022, 410 (2022).
  31. M. Sathya, G. Selvan, M. Karunakaran, K. Kasirajan, S. Usha, M. Logitha, and P. Baskaran, Eur. Phys. J. Plus, 138, Article number 67 (2023). Crossref
  32. Q. Cui, X. Gu, Y. Zhao, K. Qi, and Y. Yan, J. Taiwan Inst. Chem. Eng., 142: 104679 (2023). Crossref
  33. R. G. Poeira, A. Pérez-Rodríguez, A. J. Prot, M. Alves, P. J. Dale, and S. Sadewasser, Mater. Des., 225 (2023). Crossref
  34. R. Fukuda, T. Nishimura, and A. Yamada, Prog. Photovoltaics, 31, Iss. 7: 678 (2023). Crossref
  35. X. Jin, R. Schneider, E. Müller, M. Falke, R. Terborg, D. Hariskos, and D. Gerthsen, Microsc. Microanal., 29, Iss. 1: 69 (2023). Crossref
  36. T. Hölscher, M. Placidi, I. Becerril-Romero, R. Fonoll-Rubio, V. Izquierdo-Roca, A. Thomere, and A. Pérez-Rodríguez, Sol. Energy Mater. Sol. Cells, 251: 112169 (2023). Crossref
  37. V. Bhatt, S. T. Kim, M. Kumar, H. J. Jeong, J. Kim, J. H. Jang, and J. H. Yun, Thin Solid Films, 767: 139673 (2023). Crossref
  38. S. Cheng, K. Zhang, J. Chen, S. Lin, Y. Yao, Y. Sun, and W. Liu, Appl. Surf. Sci., 616: 156555 (2023). Crossref
  39. W. Septina, Y. Kawasaki, T. Harada, and S. Ikeda, J. Cryst. Growth, 602: 126975 (2023). Crossref
  40. C. Rincon and F. J. Ramirez, J. Appl. Phys., 72, Iss. 9: 4321 (1992).
  41. J. P. Van der Ziel, A. E.Meixner, H. M. Kasper, and J. A. Ditzenberger, Phys. Rev. B, 9: 4286 (1974).
  42. S. Roy, P. Guha, S. N. Kundu, H. Hanzawa, S. Chaudhuri, and A. K. Pal, Mater. Chem. Phys., 73, Iss. 1: 24 (2002). Crossref
  43. I. V. Bodnar, A. G. Karoza, and G. F. Smirnova, Phys. Status Solidi (b), 84, Iss. 1: k65 (1977). Crossref
  44. G. D. Holah, A. A. Schenk, S. Perkowitz, and R. D. Tomlinson, Phys. Rev. B, 23, Iss. 12: 6288 (1981). Crossref
  45. N. J. Ianno, R. J. Soukup, T. Santero, C. Kamler, J. Huguenin-Love, S. A. Darveau, and C. L. Exstrom, MRS Online Proceedings Library, 1012: 321 (2007). Crossref
  46. A. Tverjanovich, S. Bereznev, A. Gertsin, G. Muradova, A. Shoka, D. Kim, and J. Tveryanovich, Mater. Sci. Appl. Chem., 21 (2010).
  47. T. Schmid, N. Schäfer, S. Levcenko, T. Rissom, and D. Abou-Ras, Sci. Rep., 5: 18410 (2015). Crossref
  48. M. Ould Salem, R. Fonoll, S. Giraldo, Y. Sanchez, M. Placidi, V. Izquierdo-Roca, and Z. Jehl Li-Kao, Solar RRL, 4, Iss. 11: 2000284 (2020). Crossref
  49. M. Wang, M. Hossain, and K. L. Choy, Sci. Rep., 7: 6788 (2017). Crossref
  50. J. Luo, L. Tang, S. Wang, H. Yan, W. Wang, Z. Chi, and X. Xiao, Chem. Eng. J., 455: 140960 (2023). Crossref
  51. S. Cheng, K. Zhang, J. Chen, S. Lin, Y. Yao, Y. Sun, and W. Liu, Appl. Surf. Sci., 616: 156555 (2023). Crossref