Influence of Ultrasonic Impact Treatment on Structure and Properties of 3$D$ Printed Co–Cr–Mo–W Dental Alloy

A. P. Burmak$^{1}$, S. M. Voloshko$^{1}$, B. M. Mordyuk$^{1,2}$, M. О. Vasylyev$^{2}$, V. I. Zakiev$^{1,3}$, M. M. Voron$^{4}$, P. O. Guryn$^{5}$

$^{1}$Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Победы, 37, 03056 Киев, Украина
$^{2}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{3}$Национальный авиационный университет, просп. Любомира Гузара, 1, 03058 Киев, Украина
$^{4}$Физико-технологический институт металлов и сплавов НАН Украины, бульв. Академика Вернадского, 34/1, 03142 Киев, Украина
$^{5}$P. L. Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., UA-04112 Kyiv, Ukraine

Получена: 29.05.2023; окончательный вариант - 05.07.2023. Скачать: PDF

The mechanical characteristics, phase composition, residual macroscopic stresses, and surface topography of the Co–Cr–Mo–W alloy manufactured by 3$D$ printing using laser bed-powder fusion and modified by ultrasonic impact treatment (UIT) in an inert environment are studied. The interrelation between the mechanical properties of the modified surface layers and their structural and phase state after UIT of different durations (20–60 s) is established. The maximum hardening of the surface layer of the Co–Cr–Mo–W alloy (by 1.5 times) is achieved after UIT for 30 s and is caused by the formation of compressive stresses of the first kind (-510 MPa, which is $\cong$ 5.5 times higher as compared to the initial state), a decrease in the crystallite sizes of the $\varepsilon$- (80 nm) and $\gamma$- ($\cong$ 140 nm) phases, as well as an increase in the content of the $\varepsilon$-phase from 5% to 95% due to the martensitic transformation. The roughness of the modified surface after the optimal UIT regime (30 s) has parameters that practically do not differ from the initial polished state ($R_{a}$ = 2.66 µm and $R_{z}$ = 0.52 µm). The increase in microhardness and wear resistance of the surface layers proves the possibility of using UIT as an effective method for local (surface) post-treatment of medical products made of 3$D$-printed Co–Cr–Mo–W alloy.

Ключевые слова: 3$D$ printing, selective laser melting, ultrasonic impact treatment, structural-phase composition, mechanical properties, wear resistance, orthopaedics.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i07/0909.html

PACS: 43.35.Fj, 61.72.Ff, 62.20.Qp, 62.80.+f, 68.55.J-, 81.65.-b, 83.10.Tv


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. R. W. Swindeman, M. L. Santella, P. J. Maziasz, B. W. Roberts, and K. Coleman, Int. J. Pressure Vessels and Piping, 81: 507 (2004). Crossref
  2. N. J. Hallab, J. J. Jacobs, and J. L. Katz, Biomaterials Science: an Introduction to Materials in Medicine (Eds. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons) (London: Elsevier: 2004), p. 526.
  3. L. Z. Zhuang and E. W. Langer, Mater. Sci. Eng. A, 108: 247 (1989). Crossref
  4. J. B. Brunski, Biomaterials Science: an Introduction to Materials in Medicine (Eds. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons) (London: Elsevier: 2004), p. 137.
  5. D. F. Williams, Biocompatibility of Clinical Implant Materials (Boca Raton: CRC Press: 1981).
  6. S. Hiromoto, E. Onodera, A. Chiba, K. Asami, and T. Hanawa, Biomaterials, 26: 4912 (2005). Crossref
  7. M. O. Vasylyev, I. M. Makeeva, and P. O. Gurin, Prog. Phys. Met., 20: 310 (2019). Crossref
  8. M. Niinomi, T. Narushima, and M. Nakai. Advances in Metallic Biomaterials: Processing and Applications (Springer: 2015). Crossref
  9. Ping Huang and H. F. Lopez, Mater. Lett., 39: 249 (1999). Crossref
  10. Robert Wen-Wei Hsu, Chun-Chen Yang, Ching-An Huang, and Yi-Sui Chen, Mater. Chem. Phys., 93: 531 (2005).
  11. Sachiko Hiromoto, Emi Onodera, Akihiko Chiba, Katsuhiko Asami, and Takao Hanawa, Biomaterials, 26: 4912 (2005). Crossref
  12. Harald Nesse, Dina Mari Åkervik Ulstein, Malene Myhre Vaage, and Marit Øilo, J. Prosthetic Dentistry, 114: 686 (2015). Crossref
  13. Eun-Ha Kim, Du-Hyeong Lee, Sung-Min Kwon, and Tae-Yub Kwon, J. Prosthetic Dentistry, 117: 393 (2017). Crossref
  14. V. G. Efremenko, A. G. Lekatou, Yu. G. Chabak, B. V. Efremenko, I. Petryshynets, V. I. Zurnadzhy, S. Emmanouilidou, and M. Vojtko, Mater. Today Commun., 35: 105936 (2023). Crossref
  15. Peng Wu, Jun Wang, and Xiangyu Wang, Automation in Construction, 68: 21 (2016). Crossref
  16. Bharat Bhushan and Matt Caspers, Microsystem Technol., 23: 1117 (2017). Crossref
  17. Tuan D. Ngoa, Alireza Kashania, Gabriele Imbalzanoa, Kate T. Q. Nguyena, and David Huib, Composites B: Eng., 143: 172 (2018).
  18. M. O. Vasylyev, B. M. Mordyuk, S. M. Voloshko, and P. O. Gurin, Prog. Phys. Met., 23: 337 (2022). Crossref
  19. M. A. Vasylyev, B. N. Mordyuk, V. P. Bevz, S. M. Voloshko, and O. B. Mordiuk, Int. J. Surf. Sci. Eng., 14: 1 (2020). Crossref
  20. М. О. Васильєв, Б. М. Мордюк, С. І. Сидоренко, С. М. Волошко, А. П. Бурмак, Н. В. Франчік, Металлофиз. новейшие технол., 39, № 7: 905 (2017).
  21. М. О. Васильєв, Б. М. Мордюк, С. М. Волошко, В. І. Закієв, А. П. Бурмак, Д. В. Пефті, Металлофиз. новейшие технол., 41, № 11: 1499 (2019).
  22. Г. І. Прокопенко, Б. М. Мордюк, М. О. Васильєв, С. М. Волошко, Фізичні основи ультразвукового ударного зміцнення металевих поверхонь (Київ: Наукова думка: 2017).
  23. Yu. N. Petrov, G. I. Prokopenko, B. N. Mordyuk, M. A. Vasylyev, S. M. Voloshko, V. S. Skorodzievski, and V. S. Filatova, Mater. Sci. Eng. C, 58: 1024 (2016). Crossref
  24. S. P. Chenakin, V. S. Filatova, I. N. Makeeva, and M. A. Vasylyev, Appl. Surf. Sci., 408: 11 (2017). Crossref
  25. С. М. Волошко, Б. М. Мордюк, М. О. Васильєв, В. І. Закієв, А. П. Бурмак, Н. В. Франчік, Металофіз. новітні технол., 45, № 2: 217 (2023).
  26. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng. A, 458: 253 (2007). Crossref
  27. S. P. Chenakin, B. N. Mordyuk, and N. I. Khripta, Vacuum, 210: 111889 (2023). Crossref
  28. B. N. Mordyuk, O. P. Karasevskaya, and G. I. Prokopenko, Mater. Sci. Eng. A, 559: 453 (2013). Crossref
  29. B. K. Kad, J.-M. Gebert, M. T. Perez-Prado, M. E. Kassner, and M. A. Meyers, Acta Mater., 54: 4111 (2006). Crossref
  30. L. S. Fomenko, A. V. Rusakova, S. V. Lubenets, and V. A. Moskalenko, Low Temperature Physics, 36: 809 (2010). Crossref
  31. Ю. В. Мильман, С. И. Чугунова, И. В. Гончарова, Вопросы атомной науки и техники, № 4: 182 (2011).
  32. Ю. В. Мильман, А. Н. Слипенюк, В. В. Куприн, Д. В. Козырев, Вопросы атомной науки и техники, № 4: 85 (2011).
  33. О. В. Бякова, О. І. Юркова, Ю. В. Мільман, О. В. Білоцький, Теоретичні основи і методи визначення механічних властивостей матеріалів та покриттів при індентуванні на макро- та мікрорівнях (Київ: Гарант СЕРВІС: 2011).
  34. C. Balagna, S. Spriano, and M. G. Faga, Mater. Sci. Eng. C, 32: 1868 (2012). Crossref
  35. Michael Storchak, Islam Zakiev, Vadim Zakiev, and Andrey Manokhin, J. Int. Measurement Confederation, 191: 110745 (2022). Crossref
  36. Islam Zakiev, Michael Storchak, George A. Gogotsi, Vadim Zakiev, and Yuliia Kokoieva, Ceramics Int., 47: 29638 (2021). Crossref
  37. Yuka Kajima, Atsushi Takaichi, Nuttaphon Kittikundecha, Takayuki Nakamoto, Takahiro Kimura, Naoyuki Nomura, Akira Kawasaki, Takao Hanawa, Hidekazu Takahashi, and Noriyuki Wakabayashi, Mater. Sci. Eng. A, 726: 21 (2018). Crossref
  38. Yanan Zhou, Ning Li, Jiazhen Yan, and Qiang Zeng, J. Prosthetic Dentistry, 120: 617 (2018). Crossref
  39. P. Mengucci, G. Barucca, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bastianoni, B. Rutkowski, and A. Czyrska-Filemonowicz, J. Mechanical Behavior of Biomedical Mater., 60: 106 (2016). Crossref
  40. K. Yamanaka, M. Mori, Y. Koizumi, and A. Chiba, J. Mechanical Behavior of Biomedical Mater., 32: 52 (2014). Crossref
  41. B. N. Mordyuk, O. P. Karasevskaya, G. I. Prokopenko, and N. I. Khripta, Surf. Coat. Technol., 210: 54 (2012). Crossref
  42. N. I. Khripta, O. P. Karasevska, and B. N. Mordyuk, J. Mater. Eng. Perform., 26: 5446 (2017). Crossref
  43. Priscila S. N. Mendes, Jefferson Fabrício C. Lins, Patrícia S. N. Mendes, Willie R. Prudente, Rodrigo P. Siqueira, Rodrigo E. Pereira, Said M. S. Rocha, and Alexandre R. Leoni, Int. J. Eng. Research and Application, 7: 34 (2017).
  44. Marko Sedlaček, Katja Zupančič, Barbara Šetina Batič, Borut Kosec, Matija Zorc, and Aleš Nagode, Metals, 13: 637 (2023). Crossref
  45. Z. Wang, S. Y. Tang, S. Scudino, Yu. P. Ivanov, R. T. Qu, D. Wang, C. Yang, W. W. Zhang, A. L. Greer, J. Eckertf, and K. G. Prashanth, Additive Manufacturing, 37: 101725 (2021). Crossref
  46. W. Wei, Y. Zhou, W. Liu, N. Li, J. Yan, and H. Li, J. Mater. Eng. Perform., 27: 5312 (2018). Crossref
  47. Xin Dong, Yanan Zhou, Qi Sun, Yuntao Qu, Haojiang Shi, Wenbo Liu, Huabei Peng, Biao Zhang, Sheng Xu, Jiazhen Yan, and Ning Li, Mater. Sci. Eng. A, 795: 140000 (2020). Crossref
  48. Wei Wei, Yanan Zhou, Qi Sun, Ning Li, Jiazhen Yan, Haopeng Li, Wenbo Liu, and Chongxiang Huang, Metallurgical and Materials Transactions A, 51: 3205 (2020). Crossref
  49. Irmgard Weißensteiner, Manuel Petersmann, Petra Erdely, Andreas Stark, Thomas Antretter, Helmut Clemens, and Verena Maier-Kiener, Acta Mater., 164: 272 (2019). Crossref
  50. A. Z. Seeger, Z. Metallkunde, 44: 247 (1953). Crossref