Influence of Refractory Elements on Phase–Structural Stability of Heat-Resistant Corrosion-Resistant Alloys for Gas Turbine Blades

Y. H. Kvasnytska$^{1}$, I. A. Shalevska$^{1}$, A. I. Balitskii$^{2}$, L. M. Ivaskevich$^{2}$, І. І. Maksiuta$^{1}$, K. H. Kvasnytska$^{1}$

$^{1}$Физико-технологический институт металлов и сплавов НАН Украины, бульв. Академика Вернадского, 34/1, 03142 Киев, Украина
$^{2}$Физико-механический институт им. Г. В. Карпенка НАН Украины, ул. Наукова, 5, 79060 Львов, Украина

Получена: 15.02.2023; окончательный вариант - 16.03.2023. Скачать: PDF

One of the ways to improve the performance of gas-turbine engine blades is improvement the alloying complexes of heat-resistant nickel alloys used for casting. The influences of refractory metals on the macro- and microstructure and the properties of alloys of this type are analysed. It is proposed to introduce rhenium and tantalum into a heat-resistant corrosion-resistant nickel alloy for the production of working blades of gas-turbine engines. The paper presents the results of the study of the influence of chemical composition on the phase–structural components of heat-resistant alloy. Phase-transition temperatures for a new heat-resistant corrosion-resistant nickel alloy containing rhenium and tantalum have been established: liquidus temperature is of $\cong$ 1370°C, solidus temperature is of 1320°C. Studies of the microstructure of the obtained samples in the cast state, after heating and cooling in calorimetric studies, make it possible to confirm that the phase–structural state corresponds to the alloy of this type, it consists of $\gamma$-solid solution including ${\gamma}'$-phase and carbides. Rhenium is mainly part of the $\gamma$-solid solution, and tantalum strengthens the cell boundaries. When analysing the structures of the studied samples after heating in a calorimeter to 1250°C, topologically close-packed phases in the alloy containing rhenium and tantalum are not formed. Comparative studies have shown that the introduction of rhenium and tantalum to alloy improves its thermophysical properties, namely, liquidus, solidus and complete-dissolution temperatures, by about 50°C higher than for the standard heat-resistant nickel alloy CM88Y.

Ключевые слова: heat-resistant alloy, phase–structural stability, liquidus, solidus, turbine blade, gas-turbine engine.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i08/0975.html

PACS: 61.72.Ff, 68.55.Nq, 81.05.Bx, 81.20.Ev, 81.65.Kn, 81.70.Jb, 81.70.Pg


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. B. Paton, A. Khalatov, D. Kostenko, B. Bileka, O. Pismenyi, A. Bocula, V. Parafiinyk and V. Koniakhin, Visn.Nats. Acad. Nauk Ukr., 4, No. 4: 3 (2008) (in Ukrainian).
  2. Ch. T. Sims and W. C. Hagel, Supersplavy [Superalloys] (Moskva: Metallurgiya: 2004) (Russian translation).
  3. A. I. Balitskii, Y. H. Kvasnitska, L. M. Ivaskevich, and H. P. Mialnitsa, Arch. Mater. Sci. Eng., 91, Iss. 1: 5 (2018). Crossref
  4. K. Harris and J. B. Wahl, Mater. Sci. Techn., 25, Iss. 2: 147 (2009). Crossref
  5. A. I. Balyts’kyi, Y. H. Kvasnyts’ka, L. M. Ivas’kevich, and H. P. Myal’nitsa, Mater. Sci., 54: 230 (2018).
  6. J. B. Wahl and K. Harris, Proc. of Symp. ‘Superalloys 2016’ (Sept.1115, 2016) (Seven Springs, Pensilvania: TMS: 2016), p.25. Crossref
  7. A. A. Khalatov, K. A. Yushchenko, B. V. Isakov, Yu. Ya. Dashevskyi, and A. P. Shevtsov, Visn. Nats. Acad. Nauk Ukr., 12: 40 (2013) (in Ukrainian). Crossref
  8. V. P. Kuznetsov, V. P. Lesnikov, I. P. Konakova, N. A. Popov, Y. G. Kvasnitskaya, Met. Sci. Heat Treatm., 57, Nos. 78: 503 (2015). Crossref
  9. E. I. Tsivirko, P. D. Zhemanyuk, V. V. Klochikhin, V. V. Naumik, and V. V. Lunev, Met. Sci. Heat Treatm., 43: 382 (2001). Crossref
  10. V. Tavrin and E. Kolesnik, Sist. Ozb. Vis. Tech., No. 1(61): 67 (2020) (in Ukrainian).
  11. G. I. Morozova, O. B. Timofeeva, and N. V. Petrushin, Met. Sci. Heat Treatm., 51: 62 (2009). Crossref
  12. H. Hino, Y. Yoshioka, and K. Nagata, Proc. of Conf. ‘High Temperature Materials for Power Engineering’ (1998) (Liege–Julich: Forschungszentrum Gmbh: 1998), p. 1129.
  13. X. Wu, S. K. Makineni, C. H. Liebscher, G. Dehm, and J. R. Mianroodi, Nat. Commun., 11: 389 (2020).
  14. E. N. Kablov and N. V. Petrushin, Proc. of 11Int.Symp. ‘Superalloys 2008’ (Sept.1418, 2008) (Champion, Pensilvania: TMS: 2008), p. 901.
  15. V. N. Toloraia, N. H. Orekhov, and E. N. Chuvarova, Lit. Proizv., 6, No. 6: 16 (2012) (in Russian).
  16. J. Lapin, M. Gebura, T. Pelachova, and M. Nazmy, Kovove Mater., 46: 313 (2008).
  17. A. V. Narivskii, I. I. Maksiuta, Y. H. Kvasnitskaya, and E. V. Michnyan, Electrometall. Today, 4: 37 (2017).
  18. V. E. Ol’shanetskii, A. A. Glotka, and V. V. Klochikhin, Funct. Mater., 28, No. 2: 359 (2021).
  19. V. P. Kuznetsov, V. P. Lesnykov, I. P. Konakova, and N. A. Popov, Met. Sci. Heat Treatm., 52: 449 (2011). Crossref
  20. A. Sato, H. Harada, and C. Yen, Proc. of 11Int. Symp. ‘Superalloys 2008’ (Sept. 1418, 2008) (Champion, Pensilvania: TMS: 2008), p. 131.
  21. M. M. Cueto-Rodriguez, E. O. Avila-Davila, V. M. Lopez-Hirata, M. L. Saucedo-Muñoz, L. M. Palacios-Pineda, L. G. Trapaga-Martinez, and J. M. Alvarado-Orozco, Adv. Mater. Sci. Eng., 2018: 16 (2018). Crossref
  22. A. Glotka and V. Olshanetskii, Acta Metallurgica Slovaca, 27, No. 2: 68 (2021). Crossref
  23. S. T. Kishkin, Sozdanie, Issledovanie i Primenenie Zharoprochnykh Splavov: Izbrannye Trudy (k 100-Letiyu so Dnia Rozhdeniya) [Creation, Research and Application of Heat-Resistant Alloys: Selected Works (to the 100th Anniversary of Birth)] (Moskva: Nauka: 2006) (in Russian).
  24. V. Kvasnytskyi, V. Korzhyk, V. Kvasnytskyi, H. Mialnitsa, Chunlin Dong, T. Pryadko, M. Matviienko, and Y. Buturlia, East.-Eur. J. Enterp. Technol., 6, No. 12: 6 (2020). Crossref
  25. V. P. Kuznetsov, V. P. Lesnikov, M. S. Khadyev, I. P. Konakova, and N. A. Popov, Met. Sci. Heat Treatm. Ment., 54, Nos. 12: 90 (2012). Crossref
  26. D. Ma, M. Meyer Ter Vehn, P. Busse, and P. R. Sahm, Proc. of Symp. ‘Advanced Materials and Processes’. J. Phys. IV France, 3: 339 (1993).
  27. E. V. Monastyrskaia, H. I. Morozova, and Yu. B. Vlasov, Met. Sci. Heat. Treat., 48: 368 (2006). Crossref
  28. Yu. H. Kvasnytska, O. V. Kliass, V. A. Kreshchenko, H. P. Mialnitsa, and O. Yo. Shynskyi, Zharomitsnyy Koroziynostiykyy Splav na Nikeleviy Osnovi dlya Lopatok Hazoturbinnykh Dvyhuniv [Heat-Resistant Corrosion-Resistant Nickel-Based Alloy for Gas Turbine Engine Blades]: Patent 110529 UA. MPK C22C 19/05, 19/03, 19/00 (Bul., 1) (2016) (in Ukrainian).
  29. Y. H. Kvasnytska, L. M. Ivaskevych, O. I. Balytskyi, I. I. Maksyuta, and H. P. Myalnitsa, Mater. Sci., 56: 432 (2020). Crossref
  30. E. N. Kablov, Lityye Lopatki Hazoturbinnykh Dvihateley (Splavy, Tekhnologii, Pokrytiya) [Cast Blades of Gas Turbine Engines (Alloys, Ttechnology, Coatings)] (Moskva: MISiS: 2001) (in Russian).
  31. O. I. Balitskii, Yu. H. Kvasnytska, L. M. Ivaskevych, H. P. Mialnitsa, and K. H. Kvasnytska, Mater. Sci., 57: 475 (2022). Crossref