Ultrasonic Impact Treatment: Assessing the Process Energetics

S. P. Chenakin, B. M. Mordyuk, N. I. Khripta, V. Yu. Malinin

Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина

Получена: 27.04.2023; окончательный вариант - 25.05.2023. Скачать: PDF

A comparative study of process energetics is carried out for two loading schemes being used in ultrasonic impact treatment of materials, namely, a single-pin normal impacting mode and a multipin sliding/shearing impacting mode involving a low-frequency reciprocating motion of the sample. The maximum kinetic energy (or velocity) and frequency of stochastic oscillations of pins are measured experimentally for both loading modes at ultrasonic horn amplitudes varying in the range from 16 µm to 28 µm. Accordingly, a number of impact parameters such as impact time, maximum impact force, maximum impact stress, energy density and power density injected per impact in the contact area, total energy and power densities deposited in the sample (ZrTiNb alloy in this case) during treatment time are assessed. Variation of these impact characteristics is considered for both modes as a function of the ultrasonic horn amplitude, number of pins in the impact head (in sliding mode), pins’ dimensions and material of the sample. The effect of amplitude and frequency of reciprocating sample holder in sliding impact mode on the total energy density deposited across the sample surface is analysed. The evaluated parameters are expected to be helpful in understanding the impact treatment-induced changes in physicochemical characteristics of various materials.

Ключевые слова: ultrasonic impact treatment, pin velocity, pin impact frequency, impact parameters, ZrTiNb alloy.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i09/1109.html

PACS: 06.60.Vz, 43.35.+d, 62.80.+f,, 81.65.-b, 81.70.Bt, 81.70.Cv, 83.85.Vb


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. J. Zhou, D. Retraint, Z. Sun, and P. Kanouté, Surf. Coat. Technol., 349: 556 (2018). Crossref
  2. C. Wang, C. Wang, L. Wang, Y. Lai, K. Li, and Y. Zhou, Int. J. Adv. Manuf. Technol., 108: 505 (2020). Crossref
  3. P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Béranger, and C. Lemaitre, Mater. Sci. Eng. A, 280: 294 (2000). Crossref
  4. Z. D. Wang, G. F. Sun, Y. Lu, M. Z. Chen, K. D. Bi, and Z. H. Ni, Surf. Coat. Technol., 385: 125403 (2020). Crossref
  5. B. N. Mordyuk, Yu. V. Milman, M. O. Iefimov, G. I. Prokopenko, V. V. Silberschmidt, M. I. Danylenko, and A. V. Kotko, Surf. Coat. Technol., 202: 4875 (2008). Crossref
  6. A. Gill, A. Telang, S. R. Mannava, D. Qian, Y.-S. Pyoun, H. Soyama, and V. K. Vasudevan, Mater. Sci. Eng. A, 576: 346 (2013). Crossref
  7. E. Maleki, O. Unal, M. Guagliano, and S. Bagherifard, Mater. Sci. Eng. A, 810: 141029 (2021). Crossref
  8. D. A. Lesyk, H. Soyama, B. N. Mordyuk, V. V. Dzhemelinskyi, S. Martinez, N. I. Khripta, and A. Lamikiz, J. Mater. Eng. Perform., 28: 5307 (2019). Crossref
  9. H. Soyama, J. Mater. Process. Technol., 269: 65 (2019). Crossref
  10. R. Chen, H. Xue, and B. Li, Metals, 12: 642 (2022). Crossref
  11. H. L. Chan, H. H. Ruan, A. Y. Chen, and J. Lu, Acta Mater., 58: 5086 (2010). Crossref
  12. S. Kanou, O. Takakuwa, S. R. Mannava, D. Qian, V. K. Vasudevan, and H. Soyama, J. Mater. Process. Technol., 212: 1998 (2012). Crossref
  13. B. N. Mordyuk and G. I. Prokopenko, Handbook of Mechanical Nanostructuring (Ed. M. Aliofkhazraei) (Wiley-VCH Verlag GmbH & Co: 2015), p. 417. Crossref
  14. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref
  15. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 60: 6223 (2012). Crossref
  16. B. N. Mordyuk and G. I. Prokopenko, J. Sound Vibration, 308: 855 (2007). Crossref
  17. S. P. Chenakin, B. N. Mordyuk, and N. I. Khripta, Vacuum, 210: 111889 (2023). Crossref
  18. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng. A, 458: 253 (2007). Crossref
  19. S. P. Chenakin, B. N. Mordyuk, and N. I. Khripta, Appl. Surf. Sci., 470: 44 (2019). Crossref
  20. S. P. Chenakin, V. S. Filatova, I. N. Makeeva, and M. A. Vasylyev, Appl. Surf. Sci., 408: 11 (2017). Crossref
  21. D. A. Lesyk, S. Martinez, V. V. Dzhemelinskyy, A. Lamikiz, B. N. Mordyuk, and G. I. Prokopenko, Surf. Coat. Technol., 278: 108 (2015). Crossref
  22. V. K. Manzhosov, Modeli Prodol’nogo Vozdeystviya [Models of Longitudinal Impact] (Ul’yanovsk: UlGT: 2006) (in Russian).
  23. C. Wang, R. Li, X. Bi, W. Yuan, J. Gu, J. Chen, M. Yan, and Z. Zhang, J. Mater. Res. Technol., 22: 853 (2023). Crossref
  24. B. N. Mordyuk, O. P. Karasevskaya, and G. I. Prokopenko, Mater. Sci. Eng. A, 559: 453 (2013). Crossref