Impact of MHD-Processing on Technological Properties of High-Strength Casting Al−Cu Alloys

O. M. Smirnov$^{1}$, O. D. Rud$^{2}$, V. N. Fikssen$^{1}$, Yu. P. Skorobagatko$^{1}$, T. O. Monastyrska$^{2}$, M. S. Goryuk$^{1}$, A. Yu. Semenko$^{1}$, O. V. Yashchenko$^{1}$

$^{1}$Физико-технологический институт металлов и сплавов НАН Украины, бульв. Академика Вернадского, 34/1, 03142 Киев, Украина
$^{2}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина

Получена: 27.07.2023; окончательный вариант - 05.08.2023. Скачать: PDF

Among many aluminium alloys, high-strength casting ‘aluminium-copper’ alloys are ones of the main structural materials in aircraft construction. According to the results of the latest research by specialists from different countries of the world, these alloys also have a perspective for application at manufacturing of parts (hulls and pistons) of engines for the aviation and automotive equipment. However, presence of toxic (cadmium) or expensive (silver) components in the composition of such alloys as strengthening additives limits significantly the potential of their industrial production and practical application. We propose using the energy of electromagnetic fields and magnetohydrodynamic (MHD) effects to process the alloy in liquid state. Implementation of such actions takes place in specialized casting magnetodynamic installation. The developed MHD processing of melts ensures refining of the structure and increasing main mechanical properties of aluminium alloys in the solid state. Actually, it is some kind of physical modifying without reagents. Regarding high-strength casting ‘aluminium-copper’ alloys, their MHD-processing in the liquid state in a foundry magnetodynamic installation allows to ensure quite high level of strength and plasticity even without application of strengthening additives. At the same time, the standard-compliant level of the main technological properties (mainly fluidity and hot cracking susceptibility) is ensured. This indicates the possibility of obtaining thin-walled parts of complicated geometry from such alloys by casting methods. Further research will be focused on improving the mechanical and operational properties of experimental ‘aluminium-copper’ alloys due to the introduction of non-toxic and relatively cheap strengthening and modifying additives.

Ключевые слова: high-strength casting ‘aluminiumcopper’ alloys, magnetohydrodynamic (MHD) processing, structure, strength, elongation, fluidity, hot cracking susceptibility.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i09/1125.html

PACS: 06.60.Vz, 61.66.Dk, 61.72.Ff, 62.20.Qp, 81.07.Bc, 81.40.Cd, 83.60.Np


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. I. F. Kravchenko, Visn. Nac. Acad. Nauk Ukr., No. 6: 47 (2021) (in Ukrainian).
  2. L. Kniewallner, M. Rafetzeder, B. Stauder, M. Djurdjevic, und F. J. Feikus, Enwicklung und Anwendung einer AlCu basirten Hochleistungsgusslegierung für Zylinderköpfe, VDI Berichte 2254., Giesstechnik im Motorenbau 2015, Magdeburg, 1011. February 2015, p. 115.
  3. M. Rafetzeder, B. Stauder, M. B. Djurdjevic, L. Kniewallner, und F. J. Feikus, Potential einer AlCu-basierten Gusslegierung für Hochleistungs-Zylinderköpfe, 59 Östereichische Giessereitagung, 23/24 April 2015, Leoben, Giesserei Rundschau 62 (2015) Heft 5/6, p. 147.
  4. GOST 1583-93. Casting Aluminium Alloys. Specifications (in Russian).
  5. Mechanical Engineering: V. II-3: Non-ferrous Metals and Alloys. Composite Metallic Materials (Ed. I. N. Friedlander) (Moskva: Mechanical Engineering: 2001) (in Russian).
  6. E. A. Chernyshov, Casting Alloys and their Foreign Analogues (Moskva: Mechanical Engineering: 2006), p. 336 (in Russian).
  7. Conditions Diagrams of Binary Metallic Systems (Ed. N. P. Lyakishev) (Moskva: Mechanical Engineering: 1996–2000) (in Russian).
  8. Encyclopedia of Aluminum and Its Alloys. Two-Volume Set (Print) (Eds. George E. Totten, Murat Tiryakioglu, Olaf Kessler) (CRC Press Taylor and Francis Group: 2018).
  9. J. M. Silcock and H. M. Flower, Scripta Materialia, 46: 389 (2002). Crossref
  10. Sanjib Banerjee, P. S. Robi, A. Srinivasan, and Praveen Kumar Lakavath, Materials and Design, 31: 4007 (2010). Crossref
  11. Laure Bourgeois, Christian Dwyer, Matthew Weyland, Jian-Feng Nie, and Barrington C. Muddle, Acta Mater., 60: 633 (2012). Crossref
  12. V. I. Dubodelov, V. Fikssen, M. Slazhniev, M. Goryuk, Yu. Skorobagatko, A. Berezina, T. Monastyrska, O. Davydenko, and V. Spuskanyuk, Magnetohydrodynamics, 48, No. 2: 379 (2012).
  13. V. I. Dubodelov, V. N. Fikssen, A. V. Yashenko, N. A. Slazhnev, Yu. P. Skorobagatko, and M. S. Goryuk, Protsessy Litya, No. 6: 48 (2013) (in Russian).
  14. V. I. Dubodelov, V. N. Fikssen, A. L. Berezina, M. S. Goryuk, T. A. Monastyrskaya, A. V. Yashenko, N. A. Slazhnev, Yu. P. Skorobagatko, and A. V. Kotko, Protsessy Litya, No. 4: 62 (2014) (in Russian).
  15. V. P. Polishchuk, M. R. Tsin, and R. K. Horn, Magnetodynamic Pumps for Liquid Metals (Kiev: Naukova Dumka: 1989) (in Russian).
  16. J. R. Morris, Mater. Trans., 48, No. 7: 1729 (2007). Crossref
  17. F.-Q. Zu, Metals, 5: 395 (2015). Crossref
  18. O. S. Roik, O. M. Yakovenko, V. P. Kazimirov, O. O. Bilovodska, N. V. Golovataya, and V. E. Sokol’skii, J. Molec. Liq., 220: 155 (2016). Crossref
  19. M. Calvo-Dahlborg, P. S. Popel, M. J. Kramer, M. Besser, J. R. Morris, and U. Dahlborg, J. Alloys Comp., 550: 9 (2013). Crossref
  20. V. P. Polishchuk and B. A. Melnik, Liteynoe Proizvodstvo, No. 7: 6 (1989).
  21. A. L. Berezina, T. A. Monastyrskaya, A. A. Davidenko, V. I. Dubodelov, V. Z. Spuskanyuk, and V. N. Fikssen, Metallofiz. Noveishie Tekhnol., 31, No. 10: 1417 (2009) (in Russian).
  22. V. N. Fikssen, Metallurgiya Mashinostroeniya, No. 6: 24 (2012) (in Russian).
  23. V. N. Fikssen, Magnetodynamics, 58, Nos. 12: 151 (2022).