Proximity Effect between a Two-Band Superconductor and a Ferromagnet

I. Martynenko$^{1}$, O. Kalenyuk$^{1,2}$, A. Shapovalov$^{1,2}$, H. Kondakova$^{2}$, V. Shamaev$^{3}$, O. Boliasova$^{2,4}$, O. Zhitlukhina$^{2,4}$

$^{1}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{2}$Киевский академический университет НАН и МОН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{3}$Донецкий национальный технический университет, пл. Шибанкова, 2, 85300 Покровск, Украина
$^{4}$Донецкий физико-технический институт им. А. А. Галкина НАН Украины, просп. Науки, 46, 03028 Киев, Украина

Получена: 02.10.2023; окончательный вариант - 20.10.2023. Скачать: PDF

The proximity effect in heterostructures formed by the superconducting and ferromagnetic metals is one of the central problems of fundamental metal physics, the solution of which will make it possible to obtain new non-reciprocal electronic components and detectors of electromagnetic radiation. In this work, we create and study point contacts between the two-band superconductor Mo–Re alloy and the strong ferromagnet Ni. We confirm theoretical conclusions about the significant impact of relatively small changes in interface resistance on the current–voltage characteristics of the hybrid contact and discover different degrees of the ferromagnetic electrode effect on two fundamentally distinct superconducting subsystems. The obtained results are useful for developing new hybrid devices based on multiband superconductors.

Ключевые слова: hybrid heterostructures, two-band superconductor, strong ferromagnet, proximity effect.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i10/1141.html

PACS: 74.45.+c, 74.55.+v, 74.70.Ad, 75.50.Cc, 75.70.Cn


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett., 3: 552 (1959). Crossref
  2. A. J. Leggett, Prog. Theor. Phys., 36: 901 (1966). Crossref
  3. G. Binnig, A. Baratoff, H. E. Hoenig, and J. G. Bednorz, Phys. Rev. Lett., 45: 1352 (1980). Crossref
  4. C. Ren, Z. S. Wang, H. Q. Luo, H. Yang, L. Shan, and H. H. Wen, Phys. Rev. Lett., 101: 257006 (2008).
  5. V. Cvetkovic and Z. Tesanovic, Europhys. Lett., 85: 37002 (2009). Crossref
  6. V. Tarenkov, A. Dyachenko, V. Krivoruchko, A. Shapovalov, and M. Belogolovskii, J. Supercond. Nov. Magn., 33: 569 (2020). Crossref
  7. V. Tarenkov, A. Shapovalov, O. Boliasova, M. Belogolovskii, and A. Kordyuk, Low Temp. Phys., 47: 101 (2021). Crossref
  8. V. Tarenkov, A. Shapovalov, E. Zhitlukhina, M. Belogolovskii, and P. Seidel, Low Temp. Phys., 49: 103 (2023). Crossref
  9. H. Zhang, Q. Yang, Q. Dai, K. Linghu, R. Nie, and F. Wang, Supercond. Sci. Technol., 27: 055020 (2014). Crossref
  10. V. N. Krivoruchko and V. Yu. Tarenkov, Phys. Rev. B, 75: 214508 (2007). Crossref
  11. V. N. Krivoruchko and V. Yu. Tarenkov, Phys. Rev. B, 78: 054522 (2008).
  12. V. Krivoruchko and V. Tarenkov, Phys Rev B, 86: 104502 (2012).
  13. X. Liu , R. P. Panguluri, R. Mukherjee, D. Mishra, S. Pokhrel, D. P. Shoemaker, Z.-F. Huang, and B. Nadgorny, Phys. Rev. B, 106: 224417 (2022). Crossref
  14. M. A. Belogolovsskii, Yu. F. Revenko, A. Yu. Gerasimenko, V. M. Svistunov, E. Hatta, G. Plitnik, V. E. Shaternik, and E. M. Rudenko, Low Temp. Phys., 28: 391 (2002). Crossref
  15. R. Grein, T. Löfwander, G. Metalidis, and M. Eschrig, Phys. Rev. B, 81: 094508 (2010). Crossref
  16. F. Pérez-Willard, J. C. Cuevas, C. Sürgers, P. Pfundstein, J. Kopu, M. Eschrig, and H. V. Löhneysen, Phys. Rev. B, 69: 140502(R) (2004). Crossref
  17. L. S. Sharath Chandra, S. Sundar, S. Banik, S. K. Ramjan, M. K. Chattopadhyay, N. Jha, and S. B. Roy, J. Appl. Phys., 127: 163906 (2020). Crossref
  18. N. A. Tulina and S. V. Zaitsev, Solid State Commun., 86: 55 (1993). Crossref
  19. S. Sundar, L. S. S. Chandra, M. K. Chattopadhyay, and S. B. Roy, J. Phys.: Condensed Matter, 27: 045701 (2015). Crossref
  20. W. Nolting, W. Borgiel, V. Dose, and Th. Fauster, Phys. Rev. B, 40: 5015 (1989). Crossref
  21. I. P. Nevirkovets and M. A. Belogolovskii, Supercond. Sci. Technol., 24: 024009 (2011). Crossref
  22. J. Talvacchio, M. A. Janocko, and J. Greggi, J. Low Temp. Phys., 64: 395 (1986). Crossref
  23. A. D’yachenko, A. Kalenyuk, V. Tarenkov, A. Shapovalov, O. Boliasova, and D. Menesenko, Low Temp. Phys., 49: 209 (2023). Crossref
  24. M. Poláčková, E. Zhitlukhina, M. Belogolovskii, M. Gregor, T. Plecenik, and P. Seidel, Eur. Phys. J. Plus, 138: 486 (2023). Crossref
  25. R. Cattaneo, E. A. Borodianskyi, A. A. Kalenyuk, and V. M. Krasnov, Phys. Rev. Applied, 16: L061001 (2021). Crossref
  26. M. M. Krasnov, N. D. Novikova, R. Cattaneo, A. A. Kalenyuk, and V. M. Krasnov, Beilstein J. Nanotechnol., 12: 1392 (2021). Crossref
  27. A. A. Kalenyuk, A. Pagliero, E. A. Borodianskyi, A. A. Kordyuk, and V. M. Krasnov, Phys. Rev. Lett., 120: 067001 (2018).
  28. A. A. Kalenyuk, E. A. Borodianskyi, A. A. Kordyuk, and V. M. Krasnov, Phys. Rev. B, 103: 214507 (2021). Crossref
  29. A. A. Kalenyuk, A. Pagliero, E. A. Borodianskyi, S. Aswartham, S. Wurmehl, B. Büchner, D. A. Chareev, A. A. Kordyuk, and V. M. Krasnov, Phys. Rev. B, 96: 134512 (2017). Crossref
  30. D. Daghero and R. S. Gonnelli, Supercond. Sci. Technol., 23: 043001 (2010). Crossref
  31. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B, 25: 4515 (1982). Crossref
  32. E. Zhitlukhina, M. Belogolovskii, and P. Seidel, Appl. Nanosci., 10: 5121 (2020). Crossref