The Structure of a Metal Diamagnetic Droplet That Solidified as It Spreads over a Non-Magnetic Substrate in a Magnetic Field

О. V. Seredenko, V. О. Seredenko

Физико-технологический институт металлов и сплавов НАН Украины, бульв. Академика Вернадского, 34/1, 03142 Киев, Украина

Получена: 07.06.2023; окончательный вариант - 15.07.2023. Скачать: PDF

As found, the spreading and solidification of a metal droplet on a substrate is basic in a number of advanced and new technologies and is actively studied in the world. The mathematical apparatus for predicting internal flows and the technical means of direct observation of the rapid process of simultaneous spreading of a liquid droplet with the transition into a solid lamellar particle, in particular, under the action of a constant magnetic field, are very complicated. Because of this, the development of ways to obtain information about the evolution pictures of this process, which determines the effectiveness of the technology, becomes relevant. A technique for visualizing melt-flow pictures of an emulsified Bi–Zn alloy under the conditions of simultaneous spreading, cooling and solidification processes of a diamagnetic droplet on a non-magnetic metal substrate under the influence of a constant magnetic field is developed. Emulsified inclusions and oxide films are visualizers of pictures of internal flows of the melt, which is significantly disturbed and stratified by temperature. As found, a constant magnetic field applied perpendicular to the substrate affects the dynamics of the melt, which is manifested in a significant (up to 10 times) reduction of defects in the particle structure. The effect of the magnetic field on the structure of the alloy is determined, which is accompanied by 2 times’ increase in the homogeneity of the distribution of emulsified inclusions and the appearance of new forms of formations, which are not observed in samples not treated by the field. As shown, a constant magnetic field can be used promisingly in the fabrication of an array of droplets (coating, spray process, etc.) and single droplets (additive technologies, wetting of microobjects, etc.), as well as products from fast-cooled advanced alloys, for example, systems based on copper with iron, aluminium with rare-earth metals, prone to the formation of heterogeneous and rough structures.

Ключевые слова: diamagnetic metal drop, cast particle structure, magnetic field, frozen flow visualization.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i11/1253.html

PACS: 47.61.-k, 47.80.Jk, 61.25.Mv, 68.15.+e, 68.18.Fg, 81.30.Fb, 83.60.Np


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. C. Karcher and Z. Lyu, Techn. Messen., 3: 0046 (2023).
  2. J.-X. Zhou, H.-W. Xiao, Y.-P. Wang, A. Khan, X.-D. Niu, M.-F. Wen, M.-F. Chen, D.-C. Li, and H. Yamaguchi, Phys. Fluids, 34, No. 12: 122117 (2022). Crossref
  3. S. H. A. Jaffery, M. F. M. Sabri, S. Rozali, S. W. Hasan, M. H. Mahdavifard, D. A. S. AL-Zubiady, and B. R. Ravuri, Microel. Reliab., 139: 114802 (2022). Crossref
  4. L. Yang, Z. Li, T. Yang, Y. Chi, and P. Zhang, Langmuir, 37: 10838 (2021). Crossref
  5. S. Yang, Y. Xing, F. Yang, and J. Cao, Shock and Vibration, 2020: 6650155 (2020). Crossref
  6. J.-C. Yang, T.-Y. Qi, T.-Y. Han, J. Zhang, and M.-J. Ni, Phys. Fluids, 30, No. 1: 012101 (2018). Crossref
  7. M. Kamal and U. S. Mohammad, A Review: Chill-Block Melt Spin Technique, Theories and Applications (Bentham Science: 2022), p. 42. Crossref
  8. B. Li, E. J. Lavernia, Y. Lin, F. Chen, and L. Zhang, Reference Module in Materials Science and Materials Engineering (Elsevier: 2016), p. 617.
  9. Д. А. Калашник, В. А. Шаповалов, И. В. Шейко, Ю. А. Никитенко, В. В. Якуша, Современная электрометаллургия, 120, № 3: 27 (2015). Crossref
  10. К. В. Чуистов, А. П. Шпак, А. Е. Перекос, А. Д. Рудь, В. Н. Уваров, Успехи физики металлов, 4: 235 (2003). Crossref
  11. А. Ф. Белов, А. А. Бочвар, Металловедение и обработка цветных сплавов (Москва: Наука: 1992).
  12. N. Gilani, N. T. Aboulkhair, M. Simonelli, M. East, and I. A. Ashcroft, Add. Manuf., 55: 102827 (2022). Crossref
  13. N. Gilani, N. T. Aboulkhair, M. Simonelli, M. East, I. Ashcroft, and R. J. M. Hague, Add. Manuf., 48: 102402 (2021). Crossref
  14. D. Zhang, L. Qi, J. Luo, H. Yi, W. Xiong, and Y. Mo, J. Mater. Proc. Techn., 264: 234 (2019). Crossref
  15. J. Luo, W. Wang, W. Xiong, H. Shen, and L. Qi, Int. J. Mach. Tools Manuf., 122: 47 (2017). Crossref
  16. Y. Chao, L. Qi, H. Zuo, J. Luo, X. Hou, and H. Li, Int. J. Mach. Tools and Manuf., 69: 38 (2013). Crossref
  17. H. Brauer, J. M. Otterbach, M. Ziolkowski, H. Toepfer, M. Graetzel, and J. P Bergmann, AIP Conference Proc., 2102, Iss. 1: 080004 (2019).
  18. R. V. Wal, G. M. Berger, and S. D. Mozes, Exp. Fluids, 40, No. 1: 53 (2006). Crossref
  19. В. З. Канчукоев, Б. С. Карамурзов, В. А. Созаев, В. В. Чернов, Теплофиз. высоких температур, 40, № 4: 563 (2002). Crossref
  20. M. V. Gelen, R. Ruter, R. B. J. Koldeneij, D. Lose, J. H. Snoeijer, and H. Gelderblom, J. Fluid Mech., 883, No. 25: A32 (2020). Crossref
  21. N. Ashgriz, Handbook of Atomization and Sprays: Theory and Applications (Springer: 2011). Crossref
  22. C. Josserand and S. Thoroddsen, Ann. Rev. Fluid Mech., 48: 365 (2016). Crossref
  23. M. R. Hassan and C. Wang, Langmuir, 37, No. 45: 13331 (2021). Crossref
  24. J. A. Quirke, P. Stamenov, M. E. Möbius, and J. M. D. Coey, Phys. Fluids, 34: 112116 (2022).
  25. Ю. М. Гельфгат, О. А. Лиелаусис, Е. В. Щербинин, Жидкий металл под воздействием электромагнитных сил (Рига: Зинатне: 1975).
  26. D. Ren, S. Wu, J. Yang, and M. Ni, Phys. Fluids, 32: 053311 (2020). Crossref
  27. В. О. Середенко, О. В. Середенко, О. А. Паренюк, Металознавство та обробка металів, № 3: 39 (2014).
  28. M. Qin, C. Tang, S. Tong, P. Zhang, and Z. Huang, Int. J. Multiph. Flow, 117: 53 (2019). Crossref
  29. К. Дж. Смитлз, Металлы: Справочник (Москва: Металлургия: 1980) (пер. з англ.).
  30. Т. В. Захарова, Растекание расплавленных металлов по твёрдым поверхностям, смачивание, адсорбция и адгезия фаз (Автореф. дис. д-ра хим. наук) (Екатеринбург: Институт металлургии РАН: 1997).
  31. J. H. Baas, L. B. James, J. Peakall, and M. Wang, J. Sedimentary Res., 79, Nos. 3–4: 162 (2009). Crossref