The Relationship between Chemical Composition of the Alloy and the Parameters of the Martensitic Transformation in NiTi Alloys

Yu. M. Koval$^{1}$, V. V. Odnosum$^{1}$, T. G. Sych$^{1}$, G. S. Mogylnyy$^{1}$, V. V. Burtsev$^{1}$, A. Yu. Sezonenko$^{2}$

$^{1}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{2}$LLC ‘Engineering Company — SAS’, 13 Myroslav Popovych Str., UA-03142 Kyiv, Ukraine

Получена: 13.10.2023; окончательный вариант - 14.11.2023. Скачать: PDF

Today, shape-memory alloys have already taken their place in various fields of science and technology. The most used alloy is titanium nickel or nitinol. When manufacturing alloys based on NiTi in order to use them for various products, it is necessary to know the conditions, under which it is possible to obtain alloys with previously known parameters of the phase transformation. In the work, the dependence between the Ni/Ti ratio, preliminary thermomechanical treatment (TMT) and the temperature of the beginning of the martensitic transformation ($M_{s}$) is obtained.

Ключевые слова: direct and reverse transformations, shape-memory effect, vacuum induction melting, vacuum arc melting, additive methods.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i11/1293.html

PACS: 07.05.Kf, 61.50.Ks, 61.72.Ff, 62.20.fg, 64.70.kd, 64.75.-g, 81.30.Kf


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. L. Vahia, Shape Memory Implants (Springer: 2000). Crossref
  2. X. Chen, K. Liu, W. Guo, N. Gangil, A. Siddiquee, and S. Konovalov, Rapid Prototyping J., 25, No. 8: 1421 (2019). Crossref
  3. E. Farber, J. Zhu, A. Popovich, and V. Popovich, Materials Today: Proceedings, 30, Pt. 3: 761 (2020). Crossref
  4. http://www.niti-met.ru/niti.php.
  5. https://hwnanomaterial.com/memory-metal-nickel-titanium-niti-alloy-nanopowder_p75.html.
  6. Ehntsyklopediya Kibernetyky [Encyclopaedia of Cybernetics] (Ed. V. Glushkov) (Kyiv: Holovna Redaktsiya Ukrayins’koyi Radyans’koyi Ehntsyklopediyi: 1973) (in Ukrainian).
  7. S. Hossei Zadeh, A. Behbahanian, J. Brousek, M. Fan, G. Vazquez Tovar, M. Noroozi, W. Trehern, X. Qian, I. Karaman, and R. Arroyave, Preprints.org. Computer Science and Mathematics. Artificial Intelligence and Machine Learning (2023).
  8. J. Yeh, S. Chen, S. Lin, J. Gan, T. Chin, T. Shun, C. Tsau, and S. Chang, Adv. Eng. Mater., 6, No. 5: 299 (2004). Crossref
  9. G. Firstov, T. Kosorukova, Y. Koval, and V. Odnosum, Materials Today: Proceedings, 2: S499 (2015). Crossref
  10. L. V. Tikhonov, V. A. Kononenko, G. I. Prokopenko, and V. A. Rafalovsky, Struktura i Svoistva Metallov i Splavov [Structure and Properties of Metals and Alloys] (Kiev: Naukova Dumka: 1986) (in Russian).
  11. K. Otsuka and X. Ren, Prog. Mater. Sci., 50: 511 (2005). Crossref
  12. C. P. Frick, A. M. Ortega, J. Tyber, K. Gall, and H. J. Maier, Metall. Mater. Trans. A, 35: 2013 (2004). Crossref
  13. G. S. A. Peduk, S. Didibal, O. Harrysson, and S. Özbek, International Symposium ‘3D Printing (Additive Manufacturing)’ (April 3–4, 2017) (Istanbul: Istanbul Technical University: 2017), p. 1.
  14. H. Meier and C. Haberland, Proc. of 5th Int. Conf. on Advanced Research in Virtual and Rapid Prototyping (Sept. 28–Oct. 1, 2012, Portugal), p. 291. Crossref
  15. K. M. Horvay and C. T. Schable, Mater. Sci. Technol. 2018 (Oct. 14–18, 2018, Columbus), p. 63.
  16. J. Lee and Y. Shin, Lasers Manuf. Mater. Process, 6, Iss. 1: 41 (2019). Crossref