The Effect of the Specific Magnetic Susceptibility of the 06ХН28МТД Alloy (Similar to AISI 904L Steel) on Its Corrosion Behaviour in the Circulating Water of Enterprises

A. V. Dzhus$^{1}$, O. E. Narivskyi$^{2}$, G. V. Snizhnoi$^{1}$, T. V. Pulina$^{1}$, V. L. Snizhnoi$^{3}$

$^{1}$Национальный университет «Запорожская политехника», ул. Жуковского, 64, 69063 Запорожье, Украина
$^{2}$LLC ‘Ukrspetsmash’, 7 Haharina Str., UA-71100 Berdiansk, Ukraine
$^{3}$Запорожский национальный университет, ул. Жуковского, 66, 69600, Запорожье, Украина

Получена: 15.11.2023; окончательный вариант - 11.04.2024. Скачать: PDF

he article investigates the effect of the specific magnetic susceptibility $\chi_{0}$ of 06ХН28МДТ alloy (similar to AISI 904L steel) on its corrosion behaviour in recycled water of enterprises, which most often has a pH of 4–8 and a chloride concentration of up to 600 mg/l. Under such conditions, heat exchangers made of this alloy melt can be subject to pitting. Their resistance to pitting corrosion is estimated by means of the critical temperatures (CPT) in model-recycled water with the following parameters. In particular, it has been found that the chlorides’ concentration within them has a more intense effect on the alloy CPT than their pH, since it increases up to 8°C with an increase in pH from 4 up to 8 and up to 11°C with a decrease in chlorides’ concentration from 600 down to 350 mg/l. It is found that, in the model recycled water with pH 4 and chlorides’ concentration of 350 mg/l, the CPT of the alloy decreases from 53°C down to 46°C, and with chlorides’ concentration of 600 mg/l from 42°C down to 38°C with an increase in its parameter $\chi_{0}$ from 2.86 m$^{3}$/kg up to 3.09 m$^{3}$/kg. However, its further increase up to 3.38 m$^{3}$/kg contributes to the elevation of the CPT up to 49°C in media with pH 4 and 350 mg/l and up to 40°C with pH 4 and 600 mg/l. This corrosion behaviour of the alloy is due to the synergistic effect of the alloy high $\chi_{0}$, the maximum content of titanium nitrides and sulphides, and the characteristic features of the selective dissolution of $\Delta$Cr, $\Delta$Ni and $\Delta$Fe from pits. In particular, under such conditions, they are stable and develop steadfastly, since the coefficients of selective dissolution of Cr $Z_{Cr}$ < 1 and Ni $Z_{Ni}$ > 1

Ключевые слова: resistance of 06ХН28МДТ alloy to pitting, specific magnetic susceptibility of 06ХН28МДТ alloy, selective dissolution of base metals from pits, chloride-containing recycled water.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i08/0739.html

PACS: 68.47.Gh, 75.30.Cr, 81.05.Ni, 81.40.-z, 81.65.Kn, 82.45.Bb


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. G. Ya. Vorob’eva, Korrozionnaya Stoykost’ Materialov v Agressivnykh Sredakh Khimicheskikh Proizvodstv [Corrosion Resistance of Materials in Aggressive Environments of Chemical Industries] (Moskva: Khimiya: 1985) (in Russian).
  2. C. E. Torres, T. E. dos Santos, and V. F. C. Lins, RevistaMatéria (Rio de Janeiro), 25, No. 2: e-12620 (2020). Crossref
  3. O. E. Narivs’kyi, Mater. Sci., 41: 122 (2005). Crossref
  4. O. E. Narivs’kyi, Mater. Sci., 43: 124 (2007). Crossref
  5. A. Narivskiy, R. Atchibayev, A. Muradov, K. Mukashev, and Y. Yar-Mukhamedov, Int. Multidisciplinary Sci. GeoConference Surveying Geology and Mining Ecology Management SGEM 2018 (July 2–8, 2018, Albena), p. 267.
  6. O. E. Narivskyi, S. B. Belikov, S. A. Subbotin, and T. V. Pulina Mater. Sci., 57: 291 (2021). Crossref
  7. O. E. Narivskyi, S. A. Subbotin, T. V. Pulina, and M. S. Khoma, Mater. Sci., 58: 41 (2022). Crossref
  8. L. T. Roto and C. A. Loto, Mater. Research Express, 6: 086516 (2019). Crossref
  9. O. E. Narivs’kyi and S. B. Belikov, Mater. Sci., 44: 573 (2008). Crossref
  10. A. Dzhus, S. Subbotin, T. Pulina, S. Leoshchenko, and G. Sniznoi, Proc. 23rd International Multidisciplinary Scientific GeoConference SGEM 2023 (July 3–9, 2023, Albena), p. 25. Crossref
  11. H. V. Snizhnoi and Ye. L. Zhavzharov, Visnyk NTUU ‘KPI’. Seriya Radiotekhnika. Radioaparatobuduvannya, No. 49: 136 (2012) (in Ukrainian).
  12. G. V. Snizhnoi, Mater. Sci., 49: 341 (2013). Crossref
  13. MVV No. 081/12-0114-03 Poverkhnevi, Pidzemni ta Zvorotni Vody. Metodyka Vykonannya Vymiryuvan’ Masovoyi Kontsentratsiyi Khromu Zahal’noho, Khromu (IV) ta Khromu (III) Ehkstraktsiyno-Fotokolorometrychnym z Dyfenilkarbazydom [MIM No. 081/12-0114-03 Surface Groundwater and Return Water. Methodology for Measuring the Mass Concentration of Total Chromium, Chromium (IV) and Chromium (III) by Extraction-Photocolometric Method with Diphenylcarbazide] (Kyiv: Ministry of Environmental Protection of Ukraine: 2004) (in Ukrainian).
  14. MVV No. 081/12-0178-05 Poverkhnevi, Pidzemni ta Zvorotni Vody. Metodyka Vykonannya Vymiryuvan’ Masovoyi Kontsentratsiyi Nikelyu Fotokolorymetrychnym Metodom [MIM No. 081/12 - 0178-05 Surface Groundwater and Return Water. Methodology for Measuring the Mass Concentration of Nickel by Photocolorimetric Method] (Kyiv: Ministry of Environmental Protection of Ukraine: 2005) (in Ukrainian).
  15. KND 2011.1.4.034-95 Metrolohichne Zabezpechennya. Metodyka Fotokolometrychnoho Vyznachennya Zahal’noho Zaliza z Ortofenantrolinom v Poverkhnevykh i Stichnykh Vodakh [GRD 2011.1.4.034-95 Metrological Support. Methodology for Photocolometric Determination of Total Iron with Orthophenanthroline in Surface and Waste Water] (Kyiv: Ministry of Environmental Protection of Ukraine: 1995) (in Ukrainian).
  16. M. I. Freyman, I. I. Reformatskaya, and T. P. Markova, Zashchita Metallov, 27, No. 4: 617 (1991) (in Russian). Crossref
  17. I. I. Reformatskaya and A. N. Sul’zhenko, Zashchita Metallov, 34, No. 5: 503 (1998) (in Russian).
  18. G. T. Burstein and J. J. Moloney, Electrochem. Commun., 6: 1037 (2004). Crossref
  19. H. P. Leckie and H. H. Uhlig, J. Electrochem. Soc., 113: 1262 (1966). Crossref
  20. E. A. Abd El Meguid, N. A. Mahmoud, and S. S. Abd El Rehim, Mater. Chem. Phys., 63, Iss. 14: 67 (2000). Crossref
  21. E. A. Abd El Meguid and A. A. Abd El Latif, Corrosion Sci., 49, Iss. 2: 263 (2007). Crossref
  22. Ya. M. Kolotyrkin, L. I. Freyman, I. I. Reformatskaya, and E. A. Pan’shin, Zashchita Metallov, 30, No. 5: 453 (1994) (in Russian).
  23. M. Kaneko and H. S. Isaacs, Corrosion Sci., 44, Iss. 8: 1825 (2002). Crossref
  24. Ya. M. Kolotyrkin, Metall i Korroziya [Metal and Corrosion] (Moskva: Metallurgiya: 1985) (in Russian).
  25. J. Sedriks, Corrosion of Stainless Steels (New York: John Wiley and Sons: 1996).
  26. Duplex Stainless Steels: Microstructure, Properties and Applications (Ed. R. N. Gunn) (Cambridge: Woodhead Publishing LTD: 1997).
  27. N. A. Langer, L. N. Yagupol’skaya, N. I. Kakhovskiy, K. A. Yushchenko et al., Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2: 29 (1966) (in Russian).
  28. R. S. Dutta, P. K. De, and H. S. Gadiyar, Corrosion Sci., 34, Iss. 1: 51 (1993). Crossref
  29. A. Belfrouh, C. Masson, D. Vouagner, A. M. de Becdelievre, N. S. Prakash, and J. P. Audouard, Corrosion Sci., 38, Iss. 10: 1639 (1996). Crossref
  30. C.-O. A. Olson, Corrosion Sci., 37, Iss. 3: 467 (1995). Crossref
  31. P. E. Manning, D. Duquette, and W. F. Savage, Mater. Sci., 59: 260 (1980).
  32. J. D. Fritz and H. W. Peckerin, Electrochem. Soc., 11: 3309 (1991).
  33. I. D. Zartsyn, A. E. Shugurov, and I. K. Marshakov, Zashchita Metallov, No. 5: 453 (1997) (in Russian).
  34. A. V. Plaskaev and V. M. Knyazheva, 12 Perm Conf. (Perm: 1990), p. 7 (in Russian).
  35. Yu. Jagodzinski, P. Aaltonen, S. Smuk, O. Tarasenko, and H. Hänninen, J. Alloys Compd., 310, Iss. 1–2: 256 (2000). Crossref
  36. M. Pourbaix and N. De Zoubov, Atlas of Electrochemical Equilibrium in Aqueous Solutions (Oxford: Pergamon Press: 1966).