Fast Melting and Crystallization of Interfaces in Eutectic Alloys-The Idea of ‘Thermal Prick

S. Abakumov$^{1}$, A. Titova$^{2,1}$, A. М. Husak$^{2,1}$

$^{1}$Черкасский национальный университет имени Богдана Хмельницкого, бульв. Шевченка, 81, 18031 Черкассы, Украина
$^{2}$Ensemble3 Centre of Excellence, Wolczynska Str. 133, 01-919 Warsaw, Poland

Получена: 15.02.2024; окончательный вариант - 06.05.2024. Скачать: PDF

The possibility of nanomodification of eutectic alloys by fast heating slightly above eutectic temperature with subsequent very fast cooling or just quenching is analysed. The basic physical effect that may be a basis of such a ‘thermal prick’ idea is the following: (1) short-time contact melting of any inter-phase interface leads to the formation of a thin liquid layer instead of a parent solid–solid interface; (2) fast cooling of this thin liquid layer proceeds under the step of composition between opposite boundaries. Therefore, the phase transformation should be in an open inhomogeneous system. In many cases, crystallization is reduced to decomposition under the external composition gradient and demonstrates quasi-periodic phase formation with nanometre separation distance. It means that the special heat treatment, which we call the thermal prick, may create additional nanostructured zones around each interface within the parent eutectic alloy.

Ключевые слова: eutectic alloy, contact melting, crystallization, diffusion, kinetics, nanostructure.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i08/0797.html

PACS: 64.70.D-, 64.70.dg, 64.70.dj, 81.30.Fb,81.40.Ef, 82.40.Ck, 82.60.Lf


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. Yu. Taran and V. Mazur, Struktura Evtekticheskikh Splavov (Moskva: Metallurgiya: 1978) (in Russian).
  2. D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, Chem. Mater., 18, Iss. 9: 2450 (2006). Crossref
  3. K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, A. Klos, I. Jozwik-Biala, K. Sobczak, P. Dluzewski, J. Toudert, and D. A. Pawlak, Adv. Opt. Mater., 3, Iss. 3: 381 (2015). Crossref
  4. K. Wysmulek, J. Sar, P. Osewski, K. Orlinski, K. Kolodziejak, A. Trenczek-Zajac, M. Radecka, and D. A. Pawlak, Appl. Catal., B, 206, 538 (2017). Crossref
  5. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, Adv. Funct. Mater., 20, Iss. 7: 1116 (2010). Crossref
  6. P. Osewski, A. Belardini, M. Centini, C. Valagiannopoulos, G. Leahu, R. Li Voti, M. Tomczyk, A. Alù, D. A. Pawlak, and C. Sibilia, Adv. Opt. Mater., 8, Iss. 7: 1901617 (2020). Crossref
  7. K. A. Jackson and J. D. Hunt, Trans. Metall. Soc. AIME, 236: 1129 (1966).
  8. M. A. Ivanov and A. Yu. Naumuk, Metallofiz. Noveishie Tekhnol., 36, No. 12: 1571 (2014) (in Russian). Crossref
  9. M. Serefoglu, S. Bottin-Rousseau, and S. Akamatsu, Acta Mater., 242: 118425 (2023). Crossref
  10. L. Rátkai, G. I. Tóth, L. Környei, T. Pusztai, and L. Gránásy, J. Mater. Sci., 52: 5544 (2017). Crossref
  11. A. Gusak and A. Titova, J. Chem. Phys., 158: 164701 (2023). Crossref
  12. G. Martin and P. Bellon, C. R. Phys., 9, Nos. 34: 323(2008). Crossref
  13. P. Bellon and G. Martin, Phys. Rev. B, 38, No. 4: 2570 (1988). Crossref
  14. P. Pochet, P. Bellon, L. Chaffron, and G. Martin, Mater. Sci. Forum, 225: 207 (1996). Crossref
  15. A. M. Gusak, T. V. Zaporozhets, Y. O. Lyashenko, S. V. Kornienko, M. O. Pasichnyy, A. S. Shirinyan, Diffusion-Controlled Solid State Reactions: In Alloys, Thin-Films and Nanosystems (John Wiley & Sons: 2010). Crossref
  16. A. Gusak and N. Storozhuk, Handb. Solid State Diffus., 2: 37 (2017). Crossref
  17. A. M. Gusak, C. Chen, and K. N.Tu, Philos. Mag., 96, Iss. 13: 1318 (2016). Crossref
  18. K. N. Tu and A. M. Gusak, Scr. Mater., 146: 133 (2018). Crossref
  19. A. M. Gusak, A. Titova, and Z. Chen, Acta Mater., 261: 119366 (2023). Crossref
  20. Z. Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. J. Tomán, B. Gajdics, and A. M. Gusak, Comput. Phys. Commun., 204: 31 (2016). Crossref
  21. http://skmf.eu/ for the Basic Information about the Stochastic Kinetic Mean Field Model and Method.
  22. V. M. Bezpalchuk, R. Kozubski, and A. M. Gusak, Usp. Fiz. Met., 18, No. 3: 205 (2017). Crossref
  23. A. Gusak, T. Zaporozhets, and N. Storozhuk, J. Chem. Phys., 150, Iss. 17: 174109 (2019). Crossref
  24. T. V. Zaporozhets, A. Taranovskyy, G. Jáger, A. M. Gusak, Z. Erdélyi, and J. J. Tomán, Comput. Mater. Sci., 171: 109251 (2020). Crossref
  25. B. Gajdics, J. J. Tomán, and Z. Erdélyi, Comput. Phys. Commun., 258: 107609 (2021). Crossref
  26. B. Gajdics, J. J. Tomán, H. Zapolsky, Z. Erdélyi, and G. Demange, J. Appl. Phys., 126, Iss. 6: 065106 (2019). Crossref
  27. G. Jáger, J. J. Tomán, and Z. Erdélyi, J. Alloys Compd., 910: 164781 (2022). Crossref