Influence of Adhesive-Active Components on Thermodynamic Parameters of High-Entropy NiCoCrAl-(Ti, Nb) Brazing Filler Metals

S. V. Maksymova, V. V. Voronov, P. V. Kovalchuk

Институт электросварки им. Е. О. Патона НАН Украины, ул. Казимира Малевича, 11, 03150 Киев, Украина

Получена: 05.03.2024; окончательный вариант - 11.04.2024. Скачать: PDF

The conventional practice of heat-resistant nickel-alloys’ brazing involves the utilization of industrial Ni-Cr-(B, Si)-based filler metals. However, employing filler metals within this system results in the formation of brittle compounds, specifically, silicides and borides of nickel, chromium, and other elements. These brittle phases have the potential to diminish the mechanical characteristics of brazed assemblies. This study investigates the feasibility of developing multicomponent high-entropy filler metals for brazing Ni-based alloys (specifically, heat-resistant ones) without including boron and silicon in their composition. Utilizing computational methods and the updated Hume-Rothery rules, we identified a promising NiCoCrAl-(Ti, Nb) system. Various thermodynamic parameters are computed, and corresponding dependences on the alloying-components’ content are established. The alloying limits of experimental alloys are determined, aligning with the criteria established for high-entropy alloys (HEA). Melting temperatures are calculated, and the liquidus-surface area of the NiCoCrAl-(Ti, Nb) system is delineated. Based on the research findings, it is determined that this alloy possesses a dendritic structure with some amount of eutectic component, and its melting temperature below 1220°C makes it suitable for brazing heat-resistant nickel alloys.

Ключевые слова: high-entropy alloy, brazing filler metal, brazing, nickel-based alloys, entropy of mixing, enthalpy of mixing, titanium, niobium.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i08/0811.html

PACS: 05.70.Ce, 06.60.Vz, 61.66.Dk, 64.75.Nx, 65.40.gd, 81.20.Vj, 82.60.Cx


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. L. Hardwick, P. Rodgers, E. Pickering, and R. Goodall, Metall. Mater. Trans. A, 52: 2534 (2021). Crossref
  2. D. Kay, Industrial Heating, 70, No. 11: 33 (2003).
  3. D. Luo, Y. Xiao, L. Hardwick, R. Snell, M. Way, X. Sanuy Morell, F. Livera, N. Ludford, C. Panwisawas, H. Dong, and R. Goodall, Entropy, 23, No. 1: 78 (2021). Crossref
  4. A. Rabinkin, Sci. Technol. Weld. Joining, 9, No. 3: 181 (2004). Crossref
  5. S. B. Byelikov and A. D. Koval’, Metaloznavstvo ta Obrobka Metaliv, No. 2: 20 (1995) (in Ukrainian).
  6. S. Maksymova, V. Voronov, and P. Kovalchuk, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1539 (2019) (in Russian). Crossref
  7. X. Huang, Weld. J., 93, No. 7: 232 (2014).
  8. M. Salmaliyan and M. Shamanian, Heat Mass Transf., 55, No. 8: 2083 (2019). Crossref
  9. X. J. Yuan, M. B. Kim, and C. Y. Kang, Mater. Sci. Technol., 27, No. 7: 1191 (2011). Crossref
  10. M. Abdelfatah and O. A. Ojo, Mater. Sci. Technol., 25, No. 1: 61 (2009). Crossref
  11. J. W. Yeh, J. Occup. Med., 65: 1759 (2013). Crossref
  12. M. Way, D. Luo, R. Tuley, and R. Goodall, J. Alloys Compd., 858: 157750 (2021). Crossref
  13. S. V. Maksymova and V. E. Sukhoyars’kyy, Metallofiz. Noveishie Tekhnol., 45, No. 1: 75 (2023) (in Ukrainian).
  14. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng. A, 375–377: 213 (2004). Crossref
  15. T. T. Zuo, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P. Liaw, J.Hawk, and Y. Zhang, Acta Mater., 130: 10 (2017). Crossref
  16. W. Tillmann, T. Ulitzka, L. Wojarski, M. Manka, H. Ulitzka, and D. Wagstyl, Weld. World, 64: 201 (2020). Crossref
  17. W. Tillmann, T. Wojarski, D. Stangier, M. Manka, and C. Timmer, Weld. World, 64: 1597 (2020). Crossref
  18. S. A. Firstov, V. F. Gorban’, A. O. Andreev, and N. A. Krapivka, Nauka ta Innovatsiyi, 9, No. 5: 32 (2013) (in Russian).
  19. J. Yeh, Annales De Chimie – Science des Materiaux, 31: 633 (2006). Crossref
  20. G. S. Firstov, Yu. M. Koval, V. S. Filatova, V. V. Odnosum, G. Gerstein, and H. J. Maier, Prog. Phys. Met., 24, No. 4: 819 (2023).
  21. S. I. Mudryj, R. M. Bilyk, R. Ye. Ovsyanyk, O. O. Kulyk, and T. M. Mika, Phys. Chem. Solid St., 20, No 4: 432 (2019) (in Ukrainian). Crossref
  22. L. Jiang, Z. Q. Cao, J. C. Jie, J. J. Zhang, Y. P. Lu, T. M. Wang, and T. J. Li, J. Alloy. Comp., 649: 585 (2015). Crossref
  23. S. Singh, N. Wanderka, B. S. Murty, U. Glatzel, and J. Banhart, Acta Mater., 59, No. 1: 182 (2011). Crossref
  24. C. Y. Cheng and J. W. Yeh, Mater. Lett., 181: 223 (2016). Crossref
  25. A. Manzoni, H. Daoud, R. Volkl, U. Glatzel, and N. Wanderka, Ultramicroscopy, 163: 184 (2013).
  26. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li, Sci Rep., 4: 6200 (2014).
  27. M. Mukarram, M. Mujahid, and K. Yaqoob, J. Mater. Res. Technol., 10: 1243 (2021). Crossref
  28. H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M. C. Gao, J. A. Hawk, and T. Li, Mater. Des., 142: 101 (2018). Crossref
  29. Y. P. Lu, X. Z. Gao, L. Jiang, Z. N. Chen, T. M. Wang, J. C. Jie, H. J. Kang, Y. B. Zhang, S. Guo, H. H. Ruan, Y. H. Zhao, Z. Q. Cao, and T. J. Li, Acta Mater., 124: 143 (2017). Crossref
  30. I. S. Wani, T. Bhattacharjee, S. Sheikh, P. P. Bhattacharjee, S. Guo, and N. Tsuji, Mater. Sci. Eng. A, 675: 99 (2016). Crossref
  31. S. Guo and C. Liu, Prog. Nat. Sci.: Mater. Int., 21, No. 6: 433 (2011).
  32. B. Vishwanadh, N. Sarkar, S. Gangil, S. Singh, R. Tewari, G.K. Dey, and S. Banerjee, Scr. Mater., 124, No. 11: 146 (2016). Crossref
  33. X. Sun, H. Zhang, S. Lu, X. Ding, Y. Wang, and L. Vitos, Acta Mater., 140, No. 5: 366 (2017). Crossref
  34. Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng, and M. C. Gao, MRS Communications, 4, No. 2: 57 (2014). Crossref
  35. M. C. Gao, J.-W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys (Switzerland: Springer International Publishing: 2016).
  36. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Prog. Mater. Sci., 61: 1 (2014). Crossref
  37. A. K.Singh, K. Kumar, A. Dwivedi, and A. Subramaniam, Intermetallic, 53: 112 (2014). Crossref
  38. V. G. Ivanchenko, S. P Oshkad’orov, and S. M. Severyna, Metaloznavstvo ta Obrobka Metaliv, 1: 21 (2014) (in Ukrainian).
  39. A. Takeuchi and A. Inoue, Mater. Trans., 46, No. 12: 2817 (2005). Crossref
  40. M. Ren, B. S. Li, and H. Z. Fu, Trans. Nonferrous Met. Soc. China, 4: 991 (2013). Crossref
  41. S. A. Firstov, V. F. Gorban’, N. A. Krapivka, N. Y. Danylenko, and V. N. Nazarenko, Voprosy Atomnoi Nauki i Tekhniki, 2: 178 (2015) (in Russian).
  42. L. Jiang, Y. P. Lu, H. Jiang, T. M. Wang, B. N. Wei, Z. Q. Cao, and T. J. Li, Mater. Sci. Technol., 32, No. 6: 588 (2016). Crossref
  43. S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys., 109: 103505 (2011). Crossref
  44. T. B. Massalski, Вinary Alloy Phase Diagrams (Metals Park, Ohio: ASM International: 1990) (in СD).