New Powdered Nanocrystalline Soft Magnetic Composites with Portland Cement Binder

B. S. Baitaliuk$^{1}$, A. V. Nosenko$^{1}$, V. K. Nosenko$^{1}$, G. A. Bagliuk$^{2}$

$^{1}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{2}$Институт проблем материаловедения им. И. Н. Францевича НАН Украины, ул. Омельяна Прицака, 3, 03142 Киев, Украина

Получена: 09.07.2024; окончательный вариант - 20.07.2024. Скачать: PDF

Toroidal cores based on nanocrystalline powder Fe73Si16B7Cu1Nb3 (of Finemet type) and Portland cement ‘M-500’ as a binder are fabricated using powder metallurgy methods (where no pressing is applied). The cores exhibit reliable strength, temperature resistance up to 300°C, and excellent magnetic properties. Using these composites provides lower losses and more stable frequency characteristics of the cores as compared to the cores for power electronics based on carbonyl-iron powders, AlSiFe, or high-silicon electrical steel. Additionally, such composites can be used for production of the devices operating at elevated temperatures, e.g., magnetic flux concentrators for induction heaters. Since these soft magnetic composites do not require pressing operations, the cores’ manufacturing process is simplified significantly and enables diversification of core shapes and sizes.

Ключевые слова: nanocrystalline alloy, Portland cement, soft magnetic composites, powder cores.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i11/1051.html

PACS: 75.50.Bb, 75.50.Tt, 81.05.Ni, 81.07.Wx, 81.20.Ev, 84.32.Hh, 85.70.-w


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. Y. G. Guo and J. G. Zhu, Aust. J. Electr. Electron. Eng., 3, Iss. 1: 37 (2006).
  2. N. Ahmed and G. J. Atkinson, Int. Conf. Electrical Machines (ICEM) (Sept. 5–8, 2022, Valencia), p. 551.
  3. H. Shokrollahi and K. Janghorban, J. Mater. Process. Technol., 189, Iss. 1–3: 1 (2007).
  4. B. S. Baitalyuk, V. A. Maslyuk, S. B. Kotlyar, and Ya. A. Sytnyk, Powder Metall. Met. Ceram., 55: 496 (2016).
  5. L. I. Rabkin, Vysokochastotnyye Ferromagnetiki [High-Frequency Ferromagnetics] (Moskva: GIFML: 1960) (in Russian).
  6. Ferrity i Magnitodiehlektriki: Spravochnik [Ferrites and Magnetodielectrics: Handbook] (Eds. N. D. Gorbunov and G. A. Matveev) (Moskva: Sovetskoe Radio: 1975) (in Russian).
  7. K. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic Materials (New York: Kluwer Academic/Plenum Publishers: 2003).
  8. K. J. Sunday and M. L. Taheri, Metal Powder Report, 72, Iss. 6: 425 (2017).
  9. A. Inoue and F. Kong, Encyclopedia Smart Mater., 5: 10 (2022).
  10. S. Lu, M. Wang, and Z. Zhao, J. Non-Cryst. Solids, 616: 122440 (2023).
  11. F. C. Li, T. Liu, J. Y. Zhang, S. Shuang, Q. Wang, A. D. Wang, J. G. Wang, and Y. Yang, Mater. Today Adv., 4: 100027 (2019).
  12. G. Herzer, Acta Mater., 61, Iss. 3: 718 (2013).
  13. Y. Y. Zheng, Y. G. Wang, and G. T. Xia, J. Magn. Magn. Mater., 396: 97 (2015).
  14. R. Ma and P. Yu, Mater. Res. Bull., 139: 111256 (2021).
  15. Y. Wang, J. Xu, Y. Liu, and Z. Liu, Mater. Characterization, 187: 111830 (2022).
  16. P. Gramatyka, R. Nowosielski, and P. Sakiewicz, J. Achiev. Mater. Manuf. Eng., 20: 115 (2007).
  17. K. L. Alvarez, H. A. Baghbaderani, J. M. Martín, N. Burgos, M. Ipatov, Z. Pavlovic, P. McCloskey, A. Masood, and J. Gonzalez, J. Magn. Magn. Mater., 501: 166457 (2020).
  18. D. Azuma, N. Ito, and M. Ohta, J. Magn. Magn. Mater., 501: 166373 (2020).
  19. P. Gramatyka, R. Nowosielski, P. Sakiewicz, and T. Raszka, J. Achiev. Mater. Manuf. Eng., 15: 27 (2006).
  20. Z. Li, Y. Dong, S. Pauly, C. Chang, R. Wei, F. Li, and X.-M. Wang, J. Alloys Compd., 706: 1 (2017).
  21. C. Chang, Y. Dong, M. Liu, H. Guo, Q. Xiao, and Y. Zhang, J. Alloys Compd., 766: 959 (2018).
  22. Y. Zhang, Q. Chi, L. Chang, Y. Dong, P. Cai, Y. Pan, and X. Wang, J. Magn. Magn. Mater., 507: 166840 (2020).
  23. M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci., 44, Iss. 4: 291 (1999).
  24. B. Ziębowicz, D. Szewieczek, and L. A. Dobrzański, J. Achiev. Mater. Manuf. Eng., 20, Iss. 1–2: 207 (2007).
  25. J. M. Silveyra, E. Ferrara, D. L. Huber, and T. C. Monson, Science, 362, No. 6413: eaao0195 (2018).
  26. A. Krings, A. Boglietti, A. Cavagnino, and S. Sprague, IEEE Trans. Ind. Electron., 64, Iss. 3: 2405 (2017).
  27. V. A. Maslyuk, B. S. Baitalyuk, and V. K. Nosenko, Naukovi Notatky. Inzhenerna Mekhanika, 25, No. 2: 150 (2009) (in Ukrainian).
  28. S. Yang, J. Xu, M. Tian, J. Wang, T. Yang, G. Li, Y. He, M. Zeng, and X. Liu, Adv. Powder Technol., 34, Iss. 5: 104024 (2023).
  29. J. R. Groza, Nanostructured Materials (Ed. C. C. Koch) (William Andrew: 2007).
  30. H. Sun, C. Wang, J. Wang, M. Yu, and Z. Guo, J. Magn. Magn. Mater., 502: 166548 (2020).
  31. C. Zhang, P. Tao, K. Zhu, Y. Chen, W. Zhang, and Y. Yang, J. Supercond. Nov. Magn., 34: 2389 (2021).
  32. M. Krasnowski and T. Kulik, J. Alloys Compd., 495, Iss. 2: 382 (2010).
  33. G. Zhao, C. Wu, and M. Yan, J. Alloys Compd., 685: 231 (2016).
  34. X. Chen, Y. Zhang, F. Zhao, M. Tang, M. Xiang, J. Huo, M. Gao, Y. Wang, N. Yodoshi, L. Zhang, and J. Wang, J. Non-Cryst. Solids, 616: 122482 (2023).
  35. P. Błyskun, M. Kowalczyk, G. Łukaszewicz, G. Cieślak, J. Ferenc, P. Zackiewicz, and A. Kolano-Burian, Mater. Sci. Eng. B, 272: 115357 (2021).
  36. R. Zhao, Y. Dong, S. Wu, X. Li, Z. Liu, X. Jia, X. Liu, H. Wu, W. Gao, and A. He, Adv. Powder Technol., 34, Iss. 3: 103952 (2023).
  37. B. Zhou, Y. Dong, L. Liu, L. Chang, F. Bi, and X. Wang, J. Magn. Magn. Mater., 474: 1 (2019).
  38. Y. Peng, Y. Yi, L. Li, H. Ai, X. Wang, and L. Chen, J. Magn. Magn. Mater., 428: 148 (2017).
  39. Y. Peng, Y. Yi, L. Li, J. Yi, J. Nie, and C. Bao, Mater. Design, 109: 390 (2016).
  40. S. V. Chong, W. J. Trompetter, J. Leveneur, F. Robinson, B. Leuw, B. Rumsey, and N. J. Long, Mater. Sci. Eng. B, 264: 114928 (2021).
  41. K. Li, D. Cheng, H. Yu, and Z. Liu, J. Magn. Magn. Mater., 501: 166455 (2020).
  42. P. Luo, H. Yu, C. Wang, H. Yuan, Z. Liu, Y. Wang, L. Yang, and W. Wu, Metals, 13, Iss. 3: 560 (2023).
  43. V. A. Maslyuk, B. S. Baitalyuk, and H. A. Baglyuk, Abstr. HighMatTech-2011 (Oct. 3–7, 2011, Kyiv), p. 24.
  44. Y. Meng, Y. Yang, D. Chen, Y. Zhang, C. Chen, H. Li, and Z. Zhang, J. Mater. Sci. Mater. Electron., 35: 913 (2024).
  45. EN 197-1. Cement. Part 1. Composition, Specifications and Conformity Criteria for Common Cements (European Committee for Standardization: 2015).
  46. B. S. Baitalyuk, V. A. Maslyuk, and V. K. Nosenko, Powder Metall. Met. Ceram., 51: 289 (2012).
  47. A. Nosenko, T. Mika, O. Rudenko, Y. Yarmoshchuk, and V. Nosenko, Nanoscale Res. Lett., 10: 136 (2015).
  48. Micrometals.
  49. G. Herzer, IEEE Trans. Magn., 26, Iss. 5: 1397 (1990).
  50. Handbook of Magnetic Materials (Ed. K. H. J. Buschow) (Netherlands: Elsevier: 1997), vol. 10.
  51. V. K. Nosenko, Visnyk Natsionalnoi Akademii Nauk Ukrainy, 4: 68 (2015) (in Ukrainian).
  52. Melta, www.melta.com.ua.