The Effect of Reducing Surface Cladding with VT22sv Filler Wire on the Fatigue Performance of Samples Made of VT22 Alloy

A. O. Gorpenko, O. I. Semenets

АТ «АНТОНОВ», ул. Мрии, 1, 03062 Киев, Украина

Получена: 08.08.2024; окончательный вариант - 14.10.2024. Скачать: PDF

This study investigates the mechanical properties of ВТ22-alloy samples subjected to restorative argon arc cladding using ВТ22св-filler wire in an argon environment with the application of an external alternating magnetic field, followed by local heat treatment (LHT). The research reveals that insufficient protection during cladding led to defects in the fusion zone of the first group of samples, which reduce their resistance to fatigue failure. The second group of samples, which had pores in the clad layer, exhibits significant variability in service life, as pores located near the hole act as stress concentrators and facilitate crack development. In contrast, the absence of pores near the hole and the application of LHT significantly improve the quality of the clad layer and the heat-affected zone, resulting in substantial service life during fatigue testing. The findings provide valuable practical insights and emphasize the importance of adhering to established cladding parameters, final processing of parts, and LHT regimes to enhance the effectiveness and reliability of the restoration process.

Ключевые слова: high-strength titanium ВТ22 alloy, surface defects, welding, heat-affected zone, cyclic loading.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i11/1095.html

PACS: 06.60.Vz, 61.72.Ff, 62.20.mt, 62.20.Qp, 81.20.Vj, 81.40.Np, 81.70.Bt


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. S. G. Glazunov and V. N. Moiseev, Konstruktsionnyye Titanovyye Splavy [Constructional Titanium Alloys] (Moskva: Metallurgiya: 1969) (in Russian).
  2. I. V. Gorynin and B. B. Chechulin, Titan v Mashinostroyenii [Titanium in Mechanical Engineering] (Moskva: Mashinostroenie: 1990) (in Russian).
  3. U. Zwicker, Titan i Yego Splavy [Titanium and Its Alloys] (Moskva: Metallurgiya: 1979) (Russian translation).
  4. S. M. Gurevich, V. N. Zamkov, V. E. Blashchuk, N. A. Kushnirenko, G. K. Kharchenko, Yu. K. Novikov, V. P. Prilutskiy, V. K. Sabokar’, and V. B. Volkov, Metallurgiya i Tekhnologiya Svarki Titana i Yego Splavov [Metallurgy and Welding Technology of Titanium and Its Alloys] (Kiev: Naukova Dumka: 1986) (in Russian).
  5. R. F. Voytovich and E. I. Golovko, Vysokotemperaturnoye Okislenie Titana i Yego Splavov [High-Temperature Oxidation of Titanium and Its Alloys] (Kiev: Naukova Dumka: 1984) (in Russian).
  6. S. M. Gurevich, V. N. Zamkov, and N. A. Kushnirenko, Aktual’nyye Problemy Svarki Tsvetnykh Metallov [Current Issues of Welding Non-Ferrous Metals] (Kiev: Naukova Dumka: 1980) (in Russian).
  7. V. P. Prilutskiy, S. L. Shvab, I. K. Petrichenko, S. V. Akhonin, S. B. Rukhanskiy, and I. A. Radkevich, Avtomatychne Zvaryuvannya, No. 9: 10 (2016) (in Ukrainian).
  8. V. P. Prilutskiy, S. V. Akhonin, S. L. Shvab, I. K. Petrichenko, I. A. Radkevich, S. B. Rukhanskiy, and S. L. Antonyuk, Avtomatychne Zvaryuvannya, No. 1: 39 (2017) (in Ukrainian).
  9. P. E. Markovsky, Key Eng. Mater., 436: 185 (2010).
  10. O. M. Ivasyshyn, P. Ye. Markovs’kyy, I. M. Havrysh, and O. P. Karasevs’ka, Physicochemical Mechanics of Materials, No. 1: 60 (2014) (in Ukrainian).
  11. A. O. Horpenko and O. I. Semenets’, Uspikhy Materialoznavstva, No. 7: 27 (2023) (in Ukrainian).