Influence of Plastic Deformation and Long-Term Natural Ageing on the Elastic Properties of Superplastic Eutectic Alloy Bi–43 wt.% Sn

V. F. Korshak$^{1}$, Yu. O. Shapovalov$^{2}$, P. P. Pal-Val$^{2}$

$^{1}$Харьковский национальный университет имени В. Н. Каразина, пл. Свободы, 4, 61022 Харьков, Украина
$^{2}$Физико-технический институт низких температур имени Б. И. Веркина, НАН Украины, пр. Науки, 47, 61101 Харьков, Украина

Получена: 10.05.2024; окончательный вариант - 24.06.2024. Скачать: PDF

The study of changes in the dynamic Young’s modulus of a typical model superplastic Bi–43 wt.% Sn alloy under the conditions of plastic deformation, under which polycrystalline materials are subjected in order to create a structural–phase state capable of manifesting the effect of superplasticity, is performed. Changes in the Young’s modulus are also studied during long-term exposure at room temperature and normal atmospheric pressure, as a result of which the phenomenological indicators of the superplastic flow of the studied alloy are noticeably reduced, but the manifestation of the effect of superplasticity is observed. Acoustic measurements are carried out using the method of a two-component piezoelectric vibrator. An increase in the dynamic Young’s modulus as a result of compression by ≅ 70% on a hydraulic press and in the ageing process is found in both cast and compressed samples. The obtained experimental data are analysed taking into account previously obtained data on changes in the phase composition of the alloy under experimental conditions. The results of the analysis show that the increase in the Young’s modulus as a result of compression is caused by the appearance of internal stresses in the material. The increase in the Young’s modulus during ageing is primarily related to the transition of the alloy from the initial metastable state to the phase state, which is in equilibrium at room temperature. On the kinetic dependences of the modulus of elasticity in both cast and compressed samples, there is an inhibition of its changes at the ageing stag, when the phase equilibrium in the alloy has not yet been established. This is explained by the change in the kinetics of the decomposition of the α(Sn)-phase (a supersaturated solid solution of bismuth in tin) caused by the appearance of phase stresses associated with the volume effect of phase transformation. As shown, such stresses have an inhibitory effect on the progress of decomposition.

Ключевые слова: eutectic alloy, superplasticity, plastic deformation, natural ageing, phase composition, dynamic Young’s modulus, internal stresses.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i11/1125.html

PACS: 61.72.Cc, 62.20.de, 62.20.fq, 62.20.mt, 81.40.Cd, 81.40.Lm, 81.70.Bt


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. O. A. Kaibyshev, Superplasticity of Alloys, Intermetallides and Ceramics (Berlin–Heidelberg: Springer: 1992).
  2. R. Z. Valiev and I. V. Aleksandrov, Nanostrukturnyye Materialy, Poluchennyye Intensivnoy Plasticheskoy Deformatsiey [Nanostructured Materials Obtained by Severe Plastic Deformation] (Moskva: Logos: 2000) (in Russian).
  3. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics (Cambridge: Cambridge University Press: 2009).
  4. K. A. Padmanabhan, S. Balasivanandha Prabu, R. R. Mulyukov, A. Nazarov, R. M. Imaev, and S. Ghosh Chowdhury, Superplasticity (Berlin–Heidelberg: Springer-Verlag: 2018).
  5. J. Wongsa-Ngam and T. G. Langdon, Metals, 12, No. 11: 1921 (2022).
  6. V. F. Korshak, Yu. A. Shapovalov, P. P. Pal’-Val’, and P. V. Mateichenko, Bulletin of the Russian Academy of Sciences. Physics, 75, No. 10: 1345 (2011) (in Russian).
  7. V. F. Korshak, Yu. O. Shapovalov, and P. V. Mateychenko, J. Mater. Sci., 53: 8590 (2018).
  8. V. D. Natsik, P. P. Pal-Val, and S. N. Smirnov, Acoustical Physics, 44, No. 5: 553 (1998).
  9. H. A. Bowman and R. M. Schoonover, J. Res. Natl. Bur. Stand C, 71, No. 3: 179 (1967).
  10. V. F. Korshak, P. V. Mateychenko, and Yu. A. Shapovalov, Phys. Met. Metallogr., 115, No. 12: 1249 (2014).
  11. V. F. Korshak, Yu. A. Shapovalov, O. Prymak, A. P. Kryshtal, and R. L. Vasilenko, Phys. Met. Metallogr., 116, No. 8: 829 (2015).
  12. J. W. Christian, The Theory of Transformations in Metals and Alloys (Oxford: Pergamon Press: 1975).
  13. B. M. Drapkin, and V. K. Kononenko, Izv. AN SSSR. Metally, No. 2: 162 (1987) (in Russian).
  14. T. D. Shermergor, Teoriya Uprugosti Mikroneodnorodnykh Sred [Theory of Elasticity of Microinhomogeneous Media] (Moskva: Nauka: 1977) (in Russian).
  15. W. Voigt, Lehrbuch der Kristallphysik (Leipzig: Teubner Verlag: 1928) (in German).
  16. A. Reuss, Berechnung der Fliebgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech., 9: No 1: 49 (1929) (in German).
  17. R. Hill, Proc. Phys. Soc. А, 65, No 3: 349 (1952).
  18. V. F. Korshak, Yu. A. Shapovalov, A. L. Samsonik, and P. V. Mateichenko, Phys. Met. Metallogr., 113, No. 2: 190 (2012).
  19. S. A. Golovin, A. Pushkar, and D. M. Levin, Uprugie i Neuprugie Svoystva Konstruktsionnykh Mmetallicheskikh Materialov [Elastic and Inelastic Properties of Structural Metal Materials] (Moskva: Metallurgiya: 1987) (in Russian).
  20. V. F. Korshak, A. P. Kryshtal’, Yu. A. Shapovalov, and A. L. Samsonik, Phys. Met. Metallogr., 110, No. 4: 385 (2010).
  21. V. F. Korshak, R. A. Chushkina, Yu. A. Shapovalov, and P. V. Mateichenko, Phys. Met. Metallogr., 112, No. 1: 72 (2011).