Structure and Shape of Iron Dendrites in the Cu–Fe Alloy with the Addition of Carbon, Which Was Poured, Cooled and Solidified Under the Action of a Magnetostatic Field

O. V. Nogovitsyn$^{1}$, V. O. Seredenko$^{1}$, Yu. M. Romanenko$^{2}$, O. V. Seredenko$^{1}$, O. V. Chystyakov$^{1}$

$^{1}$Физико-технологический институт металлов и сплавов, НАН Украины, бульв. Академика Вернадского, 34/1, 03142 Киев, Украина
$^{2}$Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Берестейский, 37, 03056 Киев, Украина

Получена: 03.05.2024; окончательный вариант - 09.07.2024. Скачать: PDF

Cu–Fe alloys with both a copper base and dispersed (≅ 10 μm) globular inclusions of the iron phase are promising as materials with high special properties. Foundry technologies are low-cost and low-limited by the thickness of the products; however, at their low cooling rates (up to 50 K/s), branched dendrites (≅ 100 μm) are formed. Therefore, it is important to improve the dispersion of the iron phase and its structure. As established, in the Cu–20% Fe alloy smelted in an induction crucible furnace (at temperature of 1723 K), microalloyed with 0.05% C, poured into cylindrical forms (Re = (1.7–4.0)⋅104, Ri = 6.0⋅10−5, specific energy and power of mixing are of 4.4 J/kg and 1.1 W/kg, respectively), structural zones are formed: peripheral zone cooled at 19.6 K/s with a length of 17% of the casting radius with suspension structure (inclusions of 7.5 μm) and central one (at 1.1 K/s) with dendrites up to 350 μm, of which 40% are divided into fragments. A constant magnetic field applied to the melt poured in and solidified forms a magnetohydrodynamic boundary layer (Hartmann) of the melt (Ha = 13.2) with a thickness of 260 μm, which is accompanying the crystallization front during the formation of the peripheral zone, increasing the heat transfer (k = 72.9). The Hartman layer and field-enhanced microcurrents near the interphase surface of inclusions caused by the Marangoni and Seebeck effects during recalescence of dendrites increase the cooling rate of the periphery (30.1 K/s), its width (34% of the radius of the casting), and the dispersion of the suspension (3.3 μm), grinding the dendrites of the central zone (150 μm) and dividing them into fragments up to 90%. Increased mixing of the melt in the middle of the sub-melted dendrites destroys the continuous shells on the interphase surface of inclusions and the columnar structure and increases the dispersion (size ≅ 1 μm) of their subgrains. The results of the perspective work on the fabrication of copper alloys with dispersed globularized dendritic inclusions spread over the entire volume of cylindrical castings with a cavity, flat bimetallic and continuously cast cylindrical and flat bodies.

Ключевые слова: Cu–Fe alloy, melt cooling, microalloying with carbon, permanent magnetic field, iron dendrites, cast structure.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i12/1185.html

PACS: 61.25.Mv, 61.72.Mm, 68.70.+w, 81.05.Bx, 81.30.Fb, 83.60.Np, 83.80.Gh


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. A. Chatterjee, D. Popov, N. Velisavljervic, and A. Misra, Nanomater., 12: 1514 (2022).
  2. I. V. Krivtsun, P. I. Loboda, S. K. Fomichov, and V. V. Kvasnyts’kyy, Avtomatychne Zvaryuvannya, No. 8: 3 (2020) (in Ukrainian).
  3. C. Wen, Y. Qiu, Z. Zhang, K. Li, C. Deng, L. Hu, D. Chen, Y. Lu, and S. Zhou, J. Alloys Compd., 971: 172675 (2024).
  4. J. Guo, D. Lu, and J. Zou, Metals, 13, Iss. 3: 581(2023).
  5. F. Yang, L. Dong, L. Zhou, N. Zhang, X. Zhou, X. Zhang, and F. Fang, Mater. Sci. Eng. A, 849: 143484 (2022).
  6. A. Y. Pang, G. Chao, T. Luan, S. Gong, Y. Wang, Z. Jiang, Z. Xiao, Y. Jiang, and Z. Li, Mater. Sci. Eng. A, 826: 142012 (2021).
  7. M. Wang, R. Zhang, Z. Xiao, S. Gong, Y. Jiang, and Z. Li, J. Alloys Compd., 820: 153323 (2020).
  8. X. Dai, M. Xie, S. Zhou, C. Wang, M. Gu, J. Yang, and Z. Li, J. Alloys Compd., 740: 194 (2018).
  9. K. M. Liu, D. P. Lu, H. T. Zhou, Z. B. Chen, A. Atrens, and L. Lu, Mater. Sci. Eng. A, 584: 114 (2013).
  10. C. Biselli and D. G. Morris. Acta Mater., 44, Iss. 2: 493 (1996).
  11. S. Liu, J. Jie, Z. Guo, G. Yin, I. Wang, and T. Li, J. Alloys Compd., 742: 99 (2018).
  12. J. Guo, Q. Hu, J. Zou, and D. Lu, Metall. Res. Technol., 120: 312 (2023).
  13. X. Yuan, P. Zhang, J. Wang, B. Yang, and Y. Li, Materials, 16, Iss. 14: 5180 (2023).
  14. Y. B. Jeong, H. R. Jo, J. T. Kim, S. H. Hong, and K. B. Kim, J. Alloys Compd., 786: 341(2019).
  15. J. Chen, Y. Zhang, S. Yue, J. Jie, and T. Li, J. Mater. Sci., 58: 16402 (2023).
  16. I. G. Brodova, O. A. Chicova, M. A. Vityunin, T. I. Yablonskih, I. G. Shurinkina, and V. V. Astaf’ev, Phys. Metals Metallography, 108, No. 6: 591 (2009).
  17. J. Zhang, W. Hao, J. Lin, Y. Wang, and H. Chen, J. Alloys Compd., 827: 154285 (2020).
  18. Y. Z. Chen, F. Liu, G. C. Yang, X. Q. Xu, and Y. H. Zhou, J. Alloys Compd., 427: L1 (2007).
  19. V. M. Glazov, Osnovy Fizicheskoy Khimii [Fundamentals of Physical Chemistry] (Moskva: Vysshaya Shkola: 1981) (in Russian).
  20. A. Ya. Gubenko, Metally, No. 4: 99 (1997) (in Russian).
  21. K. P. Bunin, Ya. N. Malinochka, and Yu. N. Taran, Osnovy Metallografii Chuguna [Fundamentals of Cast Iron Metallurgy] (Moskva: Metallurgiya: 1969) (in Russian).
  22. A. Kotb, A. A. Vertman, and A. M. Samarin. Izvestiya Akademii Nauk SSSR. Metally, No. 3: 23 (1966) (in Russian).
  23. Y. Yan, C. Wei, Y. He, C. Li, P. Zhang, J. Li, and J. Wang, China Foundry, 19: 335 (2022).
  24. Y. Ding, Z. Xiao, M. Fang, S. Gong, and J. Dai, Mater. Sci. Eng. A, 864: 144603 (2023).
  25. Y. B. Jeong, H. R. Jo, H. J. Park, H. Kato, and K. B. Kim, J. Mater. Research Technol., 9, Iss. 6: 15989 (2020).
  26. S. Yue, J. Qu, G. Li, S. Liu, Z. Guo, J. Jie, S. Guo, and T. Li, J. Alloys Compd., 921: 166163 (2022).
  27. Y. Mitsui, M. Onoue, R. Kobayashi, K. Sato, S. Kuzuhara, W. Ito, K. Takahashi, and K. Koyama, ISIJ International, 62, Iss. 3: 413 (2022).
  28. X. Zuoa, E. Wang, L. Quc, P. Jiad, L. Zhange, and J. Hef, Materials Science Forum, 654–656: 1377 (2010).
  29. Y. D. Zhang, C. Esling, M. Calcagnotto, M. L. Gong, H. Klein, X. Zhao, and L. Zuo, Texture, Stress, and Microstructure, 2008: 349854: (2008).
  30. A. G. Fleysher, D. Ya. Povolotskiy, L. I. Mirkovskiy, Ts. L. Katsman, and L. Ya. Rudashevskiy, Izvestiya Vuzov. Chernaya Metallurgiya, No. 12: 126 (1989) (in Russian).
  31. M. N. Sosnenko, Sovremennyye Liteynyye Formy [Modern Casting Molds] (Moskva: Mashinostroenie: 1967) (in Russian).
  32. Yu. M. Gel’fgat, O. A. Lielausis, and E. V. Shcherbinin, Zhidkiy Metall pod Vozdeystviem Ehlektromagnitnykh Sil [Liquid Metal under the Influence of Electromagnetic Forces] (Riga: Zinatne: 1975) (in Russian).
  33. E. M. Sparrow, R. Eichom, and J. L. Cregg, Phys. Fluids, 2: 319 (1959).
  34. M. Z. Zhivov and Yu. A. Sokovishin, Vos’moye Rizhskoye Soveshchanie po Magnitnoy Gidrodinamike (Riga: Zinatne: 1975), vol. 1 (in Russian).
  35. M. Salcudean and R. I. L. Guthrie, Metallurgical Transaction B, 9B, Iss. 2: 181 (1978).
  36. N. O. Young, J. S. Goldstein, and M. J. Blok, J. Fluid Mech., 6, Iss. 2: 350 (1959).
  37. C. J. Smithells, Metally [Metals] (Moskva: Metallurgiya: 1980) (Russian translation).
  38. N. I. Fomin and L. M. Zatulovskiy, Ehlektricheskie Pechi i Ustanovki Induktsionnogo Nagreva [Electric Furnaces and Induction Heating Installations] (Moskva: Metallurgiya: 1979) (in Russian).
  39. V. I. Byelik, L. K. Shenevid’ko, V. M. Duka, and T. H. Tsyr, Proc. XIX Int. Sci. Practical Conf. ‘Lytvo. Metalurgiya 2023’ (Kharkiv: NTU ‘KhPI’: 2023) (in Ukrainian).
  40. A. G. Borisov, Metallofiz. Noveishie Tekhnol., 36, No. 1: 127 (2014) (in Russian).
  41. S. Sarkar, C. Srivastava, and K. Chattopadhyay, Mater. Sci. Eng. A, 723: 38 (2018).
  42. E. I. Marukovich and V. Yu. Stetsenko, Lit’e i Metallurgiya, No. 2: 142 (2005) (in Russian).
  43. Y. Wang, Y. Gao, Y. Li, W. Zhai, L. Sun, and C. Zhang, Emerging Mater. Research, 8, Iss. 4: 538 (2019).
  44. A. S. Nuradynov, O. V. Nohovitsyn, V. P. Shkolyarenko, and I. A. Nuradinov, Protsesy Lyttya, No. 4: 13 (2022) (in Ukrainian).