The Effect of Severe Deformation on the Structure and Mechanical Properties of Titanium Hydride

Ie. G. Byba$^{1}$, A. V. Minitskyi$^{1}$, D. S. Leonov$^{2}$, S. V. Maidaniuk$^{1}$, and M. Yu. Barabash$^{1,2,3}$

$^{1}$Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Берестейский, 57, 03056 Киев, Украина
$^{2}$Технический центр, НАН Украины, ул. Покровская, 13, 04070 Киев, Украина
$^{3}$Институт газа, НАН Украины, ул. Дегтяревская, 39, 03113 Киев, Украина

Получена: 07.10.2024; окончательный вариант - 25.10.2024. Скачать: PDF

The effect of both deformation conditions and pressing pressure on the structure and properties of titanium hydride formed by various methods, such as quasi-hydrostatic pressing in a high-pressure chamber, free upsetting and static one-stage pressing with subsequent second compaction, is studied. As found out, the stresses exceeding the ultimate strength of titanium hydride appear at the contact surfaces of particles at high pressures. The consolidation of the powder occurs through the mechanism of particle crushing, which contributes to the further compaction of ТіН2 powder, and due to plastic deformation. As also found out, the deformation of titanium hydride under conditions of free radial shear provides plastic deformation at significantly lower pressures as compared to the uniform quasi-hydrostatic compression. As shown, the rate of hydrogen release from sintered compacts decreases at higher pressing pressure and the degree of deformation.

Ключевые слова: titanium hydride, severe deformation, pressing, quasi-hydrostatic compression, free upsetting, porosity, dehydrogenation rate.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i12/1225.html

PACS: 61.72.Dd, 61.72.Ff, 62.20.-x, 81.20.Ev, 81.20.Hy, 81.40.Lm, 81.70.Bt


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. Ashish Saurabh, Chavvakula Madhu Meghana, Pravin Kumar Singh, and Piyush Chandra Verma, Mater. Today: Proc., 56: 412 (2022).
  2. Michael O. Bodunrin, Lesley H. Chown, and A. Joseph Omotoyinbo, Mater. Today: Proc., 38: 564 (2021).
  3. G. Lutjering, Titanium (Berlin: Springer-Verlag: 2007).
  4. Orest Ivasishin and Vladimir Moxson, Titanium Powder Metallurgy. Science, Technology and Applications (Elsevier Inc.: 2015), p. 117–148.
  5. Yakun Zhu, Tae Wook Heo, Jennifer N. Rodriguez, Peter K. Weber, Rongpei Shi, Bruce J. Baer, Felipe F. Morgado, Stoichko Antonov, Kyoung E. Kweon, Erik B. Watkins, Daniel J. Savage, James E. Chapman, Nathan D. Keilbart, Younggil Song, Qi Zhen, Baptiste Gault, Sven C. Vogel, Shohini T. Sen-Britain, Matthew G. Shalloo, Chris Orme, and Brandon C. Wood, Curr. Opin. Solid State Mater. Sci., 26: 101020 (2022).
  6. Lu Sun, Wei Xiao, Shuhui Huang, Jianwei Wang, and Ligen Wang, Int. J. of Hydrogen Energy, 43: 6756 (2018).
  7. Zhian Song, Qianqian Wang, Qigui Yang, Te Zhu, Xiaotian Yu, Yunmei Shi, Rui Ma, Mingpan Wan, Peng Zhang, Runsheng Yu, and Baoyi Wang, Appl. Surf. Sci., 651: 159240 (2024).
  8. Yali Xu and Binbin Zhang, Mater. Sci. Eng. A, 815: 141269 (2021).
  9. Yunping Jia, Shuanglin Hu, Xiaosong Zhou, and Liqun Shi, Acta Mater., 250: 118842 (2023).
  10. K. Ravikumar, S. Ganesan, and S. Karthikeyan, Adv. in Materials and Processing Technol. (2023).
  11. D. D. Pavlenko and A. V. Ovchinnikov, Materials Science, 51, No. 1: (2015).
  12. A. V. Minitsky, P. I. Loboda, Ya. I. Yevich, and I. M. Zakiev, Powder Metall. Met. Ceram., 59: 290 (2020).
  13. Alexander P. Zhilyaev, Geoffrey Ringot, Yi Huang, and Jose Maria Cabrera, Mat. Sci. Eng. A, 688: 498 (2017).
  14. Ye. G. Biba and P. I. Loboda, Powder Metall. Met. Ceram., 53: 628 (2015).
  15. S. Ignatovich, I. Zakiev, D. Borisov, and V. Zakiev, Strength Mater., 38, No. 4: 428 (2006).
  16. W. C. Oliver and G. M. Pharr, J. Mater. Res., 6: 1564 (1992).
  17. A. V. Minitsky and P. I. Loboda, Powder Metall. Met. Ceram., 56: 424 (2017).
  18. A. V. Minitsky and P. I. Loboda, Powder Metall. Met. Ceram., 57: 138 (2018).