Cluster Model of Liquid or Amorphous Metal. Quantum-Statistical Theory. Amorphous Metal

O. I. Mitsek, V. M. Pushkar

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 12.11.2013. Download: PDF

The quantum-statistical theory of amorphous metal (AM) is developed by an example of Fe—B. As supposed, the short-range order clusters ($K_{j}$) of high-spin (HS) Fe ions are separated by holes ($h_{ij}$) of low-spin (LS) Fe ions covalently bonded with B$^{+}$ cations. Wave-functions’ amplitudes of LS Fe ions ($\xi_{1}$) and B$^{+}$ ionic states ($\xi_{+}$) are calculated within the many-electron operator spinors (MEOS) representation, $D_{r}^{1}$ and $P_{R}$. The variation principle links values $\xi_{1}(T)$ and $\xi_{+}(T)$ decreasing with the increase of temperature $T < T_{min}$. The AM-phase destruction (crystallization at $T \rightarrow T_{min} - 0$) is caused by B$^{0}$-atoms’ entropy and high heat capacity $C_{V}(T)$ caused by it. The chemical-bond fluctuations (CBF) entropy of cations and band electrons supports the AM stability. One part of electrical resistance (ER) is created by capture mechanisms of electrical-current carriers by covalent states and CBF. It is decreasing with the $T$ increasing. Scattering on ‘impurity’ phonons gives ER part, which increases linearly with the $T$ increasing. Combination of these effects allows to obtain materials with constant ER (when T changes) for $T < T_{min}$.

Key words: clusters of high-spin Fe ions, holes of low-spin (LS) Fe ions and B$^{+}$ impurity ions, ‘impurity’ chemical-bond fluctuations (CBF) and phonons, heat capacity, electrical resistivity.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i01/0103.html

DOI: https://doi.org/10.15407/mfint.36.01.0103

PACS: 63.50.Lm, 71.10.-w, 71.23.An, 72.10.Di, 72.15.Cz, 75.30.Mb, 75.50.Kj

Citation: O. I. Mitsek and V. M. Pushkar, Cluster Model of Liquid or Amorphous Metal. Quantum-Statistical Theory. Amorphous Metal, Metallofiz. Noveishie Tekhnol., 36, No. 1: 103—125 (2014) (in Russian)


REFERENCES
  1. V. S. Pokatilov, Fiz. Tverd. Tela, 54, No. 3: 1880 (2012) (in Russian).
  2. A. I. Mitsek, V. N. Pushkar', Metallofiz. Noveishie Tekhnol. (to be pub-lished) (in Russian). Crossref
  3. S. V. Vonsovskiy, Magnetism (Moscow: Nauka: 1971) (in Russian).
  4. A. I. Mitsek, Uspekhi Fiziki Metallov, 13, No. 4: 345 (2013) (in Russian). Crossref
  5. A. I. Mitsek, V. N. Pushkar', Metallofiz. Noveishie Tekhnol., 33, No. 5: 591 (2011); ibidem, 34, No. 1: 1 (2012); ibidem, 34, No. 3: 309 (2012); ibidem, 34, No. 6: 721 (2012) (in Russian).
  6. Y. Saito, M. Dufay, and O. Pierre-Lanis, Phys. Rev. Lett., 108, No. 24: 245504 (2012). Crossref
  7. B. D. Goddard, A. Nold, N. Sawa et al., Phys. Rev. Lett., 109, No. 12: 120603 (2012). Crossref
  8. G. Le, Y. Y. Wang, P. K. Liaw et al., Phys. Rev. Lett., 109, No. 12: 125501 (2012). Crossref
  9. P. F. Guan, T. Fujita, A. Hirota et al., Phys. Rev. Lett., 109, No. 17: 175501 (2012). Crossref
  10. M. I. Zakharenko, T. V. Kalnysh, M. P. Semen'ko, Fiz. Met. Metalloved., 113, No. 8: 804 (2012) (in Russian).
  11. V. V. Sen'kovskiy, Fiz. Tverd. Tela, 54, No. 6: 1441 (2012) (in Russian).
  12. A. P. Shpak, A. G. Il'inskiy, O. N. Slukhovskiy et al., Metallofiz. Noveishie Tekhnol., 34, No. 6: 751 (2012) (in Russian).
  13. A. E. Teplykh, Yu. G. Chukalkin, S. G. Bogdanov et al., Fiz. Met. Metalloved., 113, No. 6: 597 (2012) (in Russian).
  14. D. A. Shishkin, Fiz. Met. Metalloved., 113, No. 5: 485 (2012) (in Russian).
  15. B. N. Filippov, Functional Mater., 19, No. 1: 27 (2012).
  16. O. Wang, Phys. Rev. Lett., 106, No. 21: 215505 (2011). Crossref
  17. G. E. Abrosimova, Uspekhi Fizicheskikh Nauk, 181, No. 12: 1265 (2011) (in Russian). Crossref
  18. A. V. Nosenko, M. G. Babich, M. P. Semen'ko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1183 (2010) (in Russian).
  19. V. S. Pokatilov, N. B. D'yakonova, E. G. Dmitrieva et al., Nanomaterialy i Nanostruktury, 4, No. 1: 29 (2013) (in Russian).