Thermal Gradual Dehydrogenation of Calcium Alanate Ca(AlH$_{4}$)$_{2}$. The System Phase Composition During the Process of Dehydrogenation

S. Yu. Zaginaichenko$^{1}$, D. V. Schur$^{1}$, Z. A. Matysina$^{2}$, D. A. Zaritsky$^{2}$, E. A. Kamenetskaya$^{1}$

$^{1}$I.M. Frantsevich Institute for Problems of Materials Sciences, NAS of Ukraine, 3 Academician Krzhizhanovskoho Str., UA-03680 Kyiv-142, Ukraine
$^{2}$Oles Honchar Dnipropetrovsk National University, 13 Naukova Str., 49050 Dnipropetrovsk, Ukraine

Received: 02.10.2013; final version - 14.01.2014. Download: PDF

The statistical theory of thermal stage-by-stage decomposition of calcium alanate with the release of hydrogen is developed. The calculation of free energies of all constituent phases of chemical reactions is performed on the basis of molecular-kinetic theory. Their dependences on temperature, hydrogen-atoms’ concentration and activity, values of energy parameters of the system are determined. The conditions of thermodynamic equilibrium of all phases determining the temperature dependence of hydrogen concentration are found. The numerical values of energy constants are evaluated, using the literature experimental data. The plots of temperature dependence of hydrogen solubility in the studied phases are constructed with the curve breaks and bends at the points of transitions between phases. The plot of temperature dependence of hydrogen extraction from the system with the temperature rise is obtained. The comparison of numerical values of free energies of phases in the points of phase transformations is performed that confirms the experimentally revealed phase composition of the system, i.e. the possibility of each phase realization in the certain temperature and hydrogen-concentration ranges.

Key words: statistical theory, phase transitions, Ca—Al—H, thermal decomposition, hydrogen release.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i02/0147.html

DOI: https://doi.org/10.15407/mfint.36.02.0147

PACS: 61.72.sd, 64.70.kd, 64.75.Bc, 88.30.rd

Citation: S. Yu. Zaginaichenko, D. V. Schur, Z. A. Matysina, D. A. Zaritsky, and E. A. Kamenetskaya, Thermal Gradual Dehydrogenation of Calcium Alanate Ca(AlH$_{4}$)$_{2}$. The System Phase Composition During the Process of Dehydrogenation, Metallofiz. Noveishie Tekhnol., 36, No. 2: 147—174 (2014) (in Russian)


REFERENCES
  1. H. H. Mal'tseva, A. I. Golovanova, T. N. Dymova, and D. P. Aleksandrov, Zhurnal Neorganicheskoy Khimii, 46, No. 12: 1965 (2001) (in Russian).
  2. M. Fichtner, C. Frommen, and O. Fuhr, Inorg. Chem., 44, No. 10: 3479 (2005). Crossref
  3. M. Felderhoff, B. Bogdanovic, and F. Schüth, Abstracts of H-Workshop on Hydrogen Storage with Novel Nanomaterials (October 23–27, 2005, Bad Honnef), p. 32.
  4. M. Schwarz, A. Haiduc, H. Stil, P. Paulus, and H. Geerlings, J. Alloys Compd., 404–406: 762 (2005). Crossref
  5. N. Morisaku, K. Komiya, L. Yuzhan, H. Yukawa, M. Morinaga, K. Ikeda, and S. Orimo, Adv. Mater. Res., 26–28: 869 (2007). Crossref
  6. K. Komiya, N. Morisaku, Y. Shinzato, K. Ikeda, S. Orimo, Y. Ohki, K. Tatsumi, H. Yukawa, and M. Morinaga, J. Alloys Compd., 446–447: 237 (2007). Crossref
  7. J. Huot, D. B. Ravnsbæk, J. Zhang, F. Cuevas, M. Latroche, and T. R. Jensen, Progress in Materials Science, 58, No. 1: 30 (2013). Crossref
  8. M. Mamatha, B. Bogdanovic, A. Pommerin, M. Felderhoff, and F. Schuth, J. Alloys Compd., 407, No. 1–2: 78 (2006). Crossref
  9. M. Mamatha, C. Weidenthaler, M. Pommerin, and F. Schuth, J. Alloys Compd., 416, No. 1–2: 303 (2006). Crossref
  10. O. M. Løvvik and P. N. Molin, Proceedings of AIP Conf. on Hydrogen in Matter (June 13–17, 2005) (Uppsala: 2006), p. 85.
  11. H. Kabbour, Ch. C. Ahn, S.-J. Hwang, R. C. Bowman, and J. Graetz, J. Alloys Comp., 446–447: 264 (2007). Crossref
  12. M. Felderhoff, Hydrogen Technology. Mobile and Portable Applications (Ed. A. Leon) (Berlin: Springer: 2008), p. 455.
  13. C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, and V. Ozoliņš, J. Phys.: Condens. Matter, 20: 064228 (2008). Crossref
  14. A. Marashdeh and T. J. Frankcombe, J. Chem. Phys., 128, No. 23: 234505 (2008). Crossref
  15. A. A. Marashdeh, A Cluster Density Functional Theory Study of the Interaction of Hydrogen Storage System NaAlH4 with Transition Metal Catalysts (Thesis of Disser. for PhD) (Leiden: Leiden University: 2008).
  16. B. Bogdanovic, M. Felderhoff, and G. Streukens, J. Serb. Chem. Soc., 74, No. 2: 183 (2009).
  17. S. Sartori, A. Leon, O. Zabara, J. Muller, M. Fichtner, and B. C. Hauback, J. Alloys Compd., 476, No. 1–2: 639 (2009). Crossref
  18. N. N. Mal'tseva, N. B. Generalova, A. Yu. Masanov, K. Yu. Zhizhin, and N. T. Kuznetsov, Russ. J. Inorg. Chem., 57, No. 13: 1631 (2012). Crossref
  19. J. Graetz and B. C. Hauback, MRS Bulletin, 38, No. 6: 473 (2013). Crossref
  20. H. Kabbour, C. C. Ahn, R. C. Bowman, and S.-J. Hwang, Abstracts of MH-2006 Int. Symposium on Metal-Hydrogen Systems. Fundamental and Applications (October 1–6, 2006, Lahaina), p. 42.
  21. X. Ke, C. Chen, and O. M. Løvvik, Bulletin of American Phys. Society, 52, No. 1: Abstract R1.00134 (2007).
  22. S. A. Orefuwa, Effect of Dopants on the Hydrogen Storage Properties of Calcium Alanate and Infra-Red Study of Some Selected Alanates (Thesis of Disser. for PhD) (Dover: 2008).
  23. N. Hanada, W. Lohstroh, and M. Fichtner, J. Phys. Chem. C, 112, No. 1: 131 (2008). Crossref
  24. L. George and S. K. Saxena, Int. J. Hydrogen Energy, 35, No. 11: 5454 (2010). Crossref
  25. T. D. Huan, M. Amsler, M. A. L. Marques, S. Botti, A. Willand, and S. Goedecker, Phys. Rev. Lett., 110, No. 13: 135502 (2013). Crossref
  26. T. Sato, K. Ikeda, H.-W. Li, H. Yukawa, M. Morinaga, and S. Orimo, Materials Transactions, 50, No. 1: 182 (2009). Crossref
  27. V. Iosub, T. Matsunaga, K. Tange, and M. Ishikiriyama, Int. J. Hydrogen Energy, 34, No. 2: 906 (2009). Crossref
  28. X. Xiao, C. Li, L. Chen, X. Fan, H. Kou, and Q. Wang, J. Alloys Comp., 509, No. 2: S743 (2011). Crossref
  29. I. P. Jain, P. Jain, and A. Jain, J. Alloys Compd., 503, No. 2: 303 (2010). Crossref
  30. C. Li, X. Xiao, L. Chen, K. Jiang, S. Li, and Q. Wang, J. Alloys Comp., 509, No. 3: 590 (2011). Crossref
  31. C. Li, X. Xiao, P. Ge, J. Xue, S. Li, H. Ge, and L. Chen, Int. J. Hydrogen Energy, 37, No. 1: 936 (2012). Crossref
  32. J. Graetz, ISRN Mater. Sci., ID 863025 (2012).
  33. O. M. Løvvik, Phys. Rev. B, 71, No. 14: 144111 (2005). Crossref
  34. C. Weidenthaler, T. J. Frankcombe, and M. Feilderhoff, Inorg. Chem., 45, No. 10: 3849 (2006). Crossref
  35. C. Wolverton and V. Ozolinš, Phys. Rev. B, 75, No. 6: 064228 (2007). Crossref
  36. A. Klaveness, P. Vajeeston, P. Ravindran, H. Fjellvåg, and A. Kjekshus, J. Alloys Comp., 433, No. 1–2: 225 (2007).
  37. C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, and V. Ozolinš, J. Phys.: Condens. Matter, 20: 064228 (2008). Crossref
  38. B. C. Hauback, Z. Kristallogr., 223, No. 10: 636 (2008). Crossref
  39. T. Sato, M. H. Sørby, K. Ikeda, S. Sato, B.C. Hauback, and S. Orimo, J. Alloys Comp., 487, Nos. 1–2: 472 (2009). Crossref
  40. T. Sato, M. H. Sørby, A. J. Ramirez-Cuesta, K. Ikeda, B. C. Hauback, S. Orimo, and K. Yamada, Abstracts of WPI–AIMR Annual Workshop (March 25–27, 2010, Sendai).
  41. T. Sato, A. J. Ramirez-Cuesta, K. Ikeda, S. Orimo, and K. Yamada, Inorg. Chem., 50, No. 17: 8007 (2011). Crossref
  42. Z. A. Matysina and D. V. Schur, Vodorod i Tverdofaznye Prevrashcheniya v Metallakh, Splavakh i Fulleritakh (Dnepropetrovsk: Nauka i Obrazovanie: 2006) (in Russian).
  43. Z. A. Matysina, S. Yu. Zaginaichenko, and D. V. Schur, Rastvorimost' Primesey v Metallakh, Splavakh, Intermetallidakh, Fulleritakh (Dnepropetrovsk: Nauka i Obrazovanie: 2006) (in Russian).
  44. Z. A. Matysina, D. V. Schur, and S. Yu. Zaginaichenko, Atomnye, Fullerenovye i Drugie Molekulyarnye Fazy Vnedreniya (Dnepropetrovsk: Izdatel'stvo 'Ma-kovetskiy': 2012) (in Russian).
  45. T. Sichla and H. Jacobs, Eur. J. Solid State Inorg. Chem., 33: 453 (1996).
  46. A. E. Gridani and M. E. Mouhtadi, J. Mol. Struct. Theochem, 532: 183 (2000). Crossref
  47. P. Morris, D. K. Ross, S. Ivanov, D. R. Weaver, and O. Serot, J. Alloys Compd., 363, Nos. 1–2: 88 (2004). Crossref
  48. H. Wu, W. Zhou, T. J. Udovic, J. J. Rush, and T. Yildirim, J. Alloys Comp., 436, Nos. 1–2: 51 (2007). Crossref
  49. L. G. Hector, J. F. Herbst, W. Wolf, P. Saxe, and G. Kresse, Phys. Rev. B, 76, No. 1: 014121 (2007). Crossref
  50. J. S. Tse, D. D. Klug, S. Desgreniers, J. S. Smith, R. Flacau, Z. Liu, J. Hu, N. Chen, and D. T. Jiang, Phys. Rev. B, 75, No. 13: 134108 (2007). Crossref
  51. Y. Li, B. Li, T. Cui, Ya. Li, L. Zhang, Y. Ma, and G. Zou, J. Phys: Condens. Matter., 20, No. 4: 045211 (2008). Crossref
  52. M. Gonzalez-Silveira, R. Gremaud, H. Schreuders, M. J. Setten, E. Batyrev, A. Rougier, L. Dupont, E. G. Bardaji, W. Lohstroh, and B. Dam, J. Phys. Chem. C, 114, No. 32: 13895 (2010). Crossref
  53. J. A. Alonso, M. Retuerto, J. Sanchez-Benitez, and M. T. Fernandez-Diaz, Z. Kristallogr., 225, No. 6: 225 (2010).
  54. L. George and S. K. Saxena, Int. J. Hydrogen Energy, 35, No. 11: 5454 (2010). Crossref
  55. M. Corno, E. Pinatel, P. Ugliengo, and M. Baricco, Proceedings of 5th Hydrogen & Energy Int. Symp. (January 24–29, 2011) (Switzerland: Stoos: 2011), p. 17.
  56. R. C. Ropp, Encyclopedia of the Alkaline-Earth Compounds (Oxford: Elsevier Science & Tech.: 2013), p. 1250.
  57. E. Veleckis, J. Less Common Met., 80, No. 2: 241 (1981). Crossref
  58. V. P. Itkin, C. B. Alcock, P. J. Ekeren, and H. A. Oonk, Bulletin of Alloy Phase Diagrams, 9, No. 6: 652 (1988). Crossref
  59. G. J. Miller, F. Li, and H. F. Franzen, J. Am. Chem. Soc., 115, No. 9: 3739 (1993). Crossref
  60. D. Zhou, J. Liu, J. Zhang, and P. Peng, Transactions of Nonferrous Metals Society of China, 17, No. 2: 250 (2007). Crossref
  61. H. Tanaka, H. Miyamura, N. Kuriyama, T. Sakai, and I. Uehara, Calcium–Aluminium System Hydrogen Absorbing Alloy, U.S. Patent No. 5803995 (Published September 8, 1998).
  62. H. Tanaka, H. Takeshita, N. Kuriyama, T. Sakai, I. Uehara, D. Noréus, A. Züttel, L. Schlapbach, and S. Suda, IEA Task 12: Metal Hydrides and Carbon for Hydrogen Storage (2001), p. 23.
  63. D. Kevorkov and R. Schmid-Fetzer, Z. Mettallkd., 92, No. 8: 946 (2001).
  64. X. G. Min, Y. S. Sun, F. Xue, W. W. Du, and D. Y. Wu, Mater. Chem. Phys., 78, No. 1: 88 (2003). Crossref
  65. H. Okamoto, J. Phase Equilibria, 24, No. 6: 580 (2003). Crossref
  66. M. A. Parvez, X. Wang, E. Essadiqi, and M. Medraj, Magnesium Technology (Eds. N. Neelameggham, H. I. Kaplan, and B. R. Powell) (Warrendale: TSM: 2005), p. 179.
  67. W. Y. Yu, N. Wang, X. B. Xiao, B. Y. Tang, L. M. Peng, and W. J. Ding, Solid State Sciences, 11, No. 8: 1400 (2009). Crossref
  68. D. Shapiro, D. Fuks, and A. Kiv, Information Technologies and Computer Modelling, 13, No. 1: 7 (2010).
  69. E. Deligoz, K. Colakoglu, H. Ozisik, and Y. O. Cifti, Computational Materials Science, 68: 27 (2013). Crossref