Determination of Conditions for Transition-Metals’ Deposition from Their Carbonyls by Means of the LCVD-Process Simulation

K. V. Kirpenko$^{1}$, A. V. Nedolya$^{1}$, I. M. Titov$^{2}$

$^{1}$Zaporizhzhya National University, 66 Zhukovskogo Str., 69600 Zaporizhzhya, Ukraine
$^{2}$R&D Center for Panoramic Acoustic Systems, NAS of Ukraine, 1 Chubanova Str., 69600 Zaporizhia, Ukraine

Received: 22.11.2013; final version - 24.04.2014. Download: PDF

Within the scope of the mathematical model, which takes into account convective heat transfer to the surface of the precipitate formed in the laser CVD-process, the distribution of temperature field is calculated and the conditions for the formation of precipitate on the dielectric substrate during pyrolytic decomposition of nickel tetracarbonyl and carbonyls of other transition metals are determined. The finite element method is used to calculate precipitation profiles of metals, which are in a good agreement with experimental data. Parameters of the laser radiation, at which the pyrolysis of carbonyls and deposition of metal onto a substrate take place, are calculated. The dimensional parameters of the precipitates of transition metals are predicted.

Key words: metal precipitate, metals’ carbonyls, dielectric substrate, LCVD-process, nonlinear heat conduction equation.



PACS: 02.60.Lj, 68.55.jd, 81.15.Aa, 81.15.Fg, 81.15.Gh, 81.16.Mk

Citation: K. V. Kirpenko, A. V. Nedolya, and I. M. Titov, Determination of Conditions for Transition-Metals’ Deposition from Their Carbonyls by Means of the LCVD-Process Simulation, Metallofiz. Noveishie Tekhnol., 36, No. 6: 735—743 (2014) (in Russian)

  1. H. Choi, Y. Yang, X. Li, Int. J. Manuf. Technol., 26: 335 (2005). Crossref
  2. C. T.-C. Nguyen, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 54, No. 2: 251 (2007). Crossref
  3. D. Bäuerle, J. Appl. Phys. A, 101: 447 (2010). Crossref
  4. V. G. Syrkin, Karbonil'nye Metally (Moscow: Metallurgiya: 1978) (in Russian).
  5. W. Kräuter, D. Bäuerle, and F. Fimberger, J. Appl. Phys. A, 31: 13 (1983). Crossref
  6. J. Han and K. F. Jensen, Korean J. Chem. Eng., 14, No. 2: 129 (1997). Crossref
  7. E. V. Velichko, A. V. Nedolya, and I. N. Titov, Physical Surface Engineering, 6, Nos. 3–4: 189 (2008) (in Russian).
  8. N. Arnold, E. Thor, N. Kirichenko, and D. Bäuerle, J. Appl. Phys. A, 62, 503 (1996). Crossref
  9. F. Pertzoldt, K. Piglmayer, W. Kräuter, and D. Bäuerle, J. Appl. Phys. A, 35: 155 (1984). Crossref