Excess Quasi-Particle Current in Josephson Superconductor—Doped Semiconductor—Superconductor Heterostructures MoRe—Si (W)—MoRe

V. Eh. Shaternik$^{1}$, M. A. Belogolovskii$^{2}$, A. P. Shapovalov$^{3}$, A. Yu. Suvorov$^{1}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 72 R. Luxembourg Str., 83114 Donetsk, Ukraine
$^{3}$V. Bakul Institute for Superhard Materials NAS of Ukraine, 2 Avtozavods’ka Str., 04074 Kyiv, Ukraine

Received: 28.11.2013. Download: PDF

Current—voltage characteristics of fabricated MoRe—Si(W)—MoRe heterojunctions are investigated in a wide range of changes in the parameters (such as thickness and dopant concentration) of the semiconductor Si (W) barriers. As found, at relatively high concentrations (5—9 at.%) of tungsten in the silicon barriers, a resonant tunnelling effect occurs through the localized levels of tungsten clusters. Simultaneously, under certain conditions, a superconducting Josephson current appears through such junctions and is conditioned by the multiple Andreev reflections of the Bogolyubov quasi-particles (quasi-electrons and quasi-holes) within them. The experimentally observed high quasi-particle excess current through the junctions indicates that there is a significant contribution of the Andreev reflections by the two $S/N$ interfaces into the charge transport through the studied Josephson heterostructures.

Key words: Josephson current, resonant tunnelling effect, Andreev reflection, high quasi-particle excess current.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i08/0999.html

DOI: https://doi.org/10.15407/mfint.36.08.0999

PACS: 73.23.-b, 73.40.Gk, 73.40.Ns, 74.50.+r, 74.70.Ad, 85.25.Am, 85.25.Cp

Citation: V. Eh. Shaternik, M. A. Belogolovskii, A. P. Shapovalov, and A. Yu. Suvorov, Excess Quasi-Particle Current in Josephson Superconductor—Doped Semiconductor—Superconductor Heterostructures MoRe—Si (W)—MoRe, Metallofiz. Noveishie Tekhnol., 36, No. 8: 999—1006 (2014) (in Russian)

  1. M. Gurvitch, M. A. Washington, and H. A. Huggins, Appl. Phys. Lett., 42, Iss. 5: 472 (1983). Crossref
  2. M. Tinkham, Introduction to Superconductivity. 2nd Ed. (Mineola, NY: Dover Publications: 1996).
  3. H. Schulze, R. Behr, F. Müller, and J. Niemeyer, Appl. Phys. Lett., 73: 996 (1998). Crossref
  4. K. K. Likharev and V. K. Semenov, IEEE Trans. Appl. Supercond., 1, Iss. 1: 3 (1991). Crossref
  5. A. P. Shapovalov, Metallofiz. Noveishie Tekhnol., 35, No. 8: 1021 (2013) (in Russian).
  6. V. Shaternik, A. Shapovalov, A. Suvorov, S. Doring, S. Schmidt, and P. Seidel, Proc. of 8th Int'l Kharkov Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves—'MSMW 2013' (June 23–28, 2013, Kharkov, Ukraine), p. 655.
  7. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B, 25, No. 7: 4515 (1982). Crossref
  8. V. E. Shaternik, S. Yu. Larkin, and M. A. Belogolovskii, Int. J. Mod. Phys. B, 23, No. 17: 3520 (2009). Crossref