Structure and Properties of А356—AlCuFe Composite Obtained Using Electromagnetic Agitation

S. S. Polishchuk$^{1}$, A. L. Berezina$^{1}$, A. A. Davidenko$^{2}$, V. Z. Spuskanyuk$^{2}$, V. N. Fixsen$^{3}$, A. V. Yashchenko$^{3}$, V. V. Burkhovetskii$^{2}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 72 R. Luxembourg Str., 83114 Donetsk, Ukraine
$^{3}$Physical-and-Technological Institute of Metals and Alloys NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 14.01.2014. Download: PDF

This paper considers the possibility of fabrication of the composites based on silumin A356 ($\cong$ 7% wt. Si, 0.4% wt. Mg, etc.), using casting with the addition of quasi-crystalline Al$_{65}$Cu$_{20}$Fe$_{15}$ (45% wt. Al, 38% wt. Cu, 17% wt. Fe) particles into the melt pool and subsequent treatment of the melt in a magnetohydrodynamic (MHD) plant. As shown, the addition of 8%wt. of Al$_{65}$Cu$_{20}$Fe$_{15}$ powder provides optimal parameters of the treatment in the MHD plant and enables production of composite material, whose hardness is higher by 70% than that of the initial A356 alloy. The influence of heat treatment and severe plastic deformation on the structure and properties of the obtained alloy is analysed. Mechanical properties of A356—Al$_{65}$Cu$_{20}$Fe$_{15}$ composites at elevated temperatures are studied.

Key words: silumin, composite, severe plastic deformation.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i09/1189.html

DOI: https://doi.org/10.15407/mfint.36.09.1189

PACS: 61.66.Dk, 61.72.Ff, 62.20.fq, 64.70.kd, 81.20.Hy, 81.40.Cd, 81.40.Ef

Citation: S. S. Polishchuk, A. L. Berezina, A. A. Davidenko, V. Z. Spuskanyuk, V. N. Fixsen, A. V. Yashchenko, and V. V. Burkhovetskii, Structure and Properties of А356—AlCuFe Composite Obtained Using Electromagnetic Agitation, Metallofiz. Noveishie Tekhnol., 36, No. 9: 1189—1205 (2014) (in Russian)


REFERENCES
  1. M. Tash, F. H. Samuel, F. Mucciardi, and H. W. Doty, Mater. Sci. Eng. A, 443: 185 (2007). Crossref
  2. Q. F. Li, N. L. Loh, and N. P. Hung, J. Mater. Proc. Technol., 48: 373 (1995). Crossref
  3. A. Mazahery and M. O. Shabani, Trans. Nonferrous Met. Soc. China, 22: 275 (2012). Crossref
  4. A. Inoue and H. M. Kimura, Mat. Res. Soc. Symp. Proc., 553: 495 (1999). Crossref
  5. F. Tang, I. E. Anderson, and S. B. Biner, Mater. Sci. Eng. A, 363: 20 (2003). Crossref
  6. M. Galano, F. Audebert, A. Garcia Escorial, I. C. Stone, and B. Cantor, Acta Mater., 57: 5120 (2009). Crossref
  7. W. A. Cassada, G. J. Shiflet, and S. J. Poon, J. of Microscopy, 146: 323 (1987). Crossref
  8. Su-Ling Cheng, Gen-Cang Yang, Man Zhu, Jin-Cheng Wang, and Yao-He Zhou, Nonferrous Met. Soc. China, 20: 572 (2010).
  9. Sung-Dae Kim, Dong-Su Ko, Woo Kil Jang, Kwang Seon Shin, and Young-Woon Kim, Mater. Sci. Eng. A, 528: 4845 (2011). Crossref
  10. A. L. Berezina, T. O. Monastyrska, O. A. Davydenko, V. I. Dubodelov, V. Z. Spuskanyuk, and V. N. Fiksen, Metallofiz. Noveishie Tekhnol., 31, No. 10: 1417 (2009) (in Russian).
  11. V. A. Beloshenko, V. N. Varyukhin, and V. Z. Spuskanyuk, Teoriya i Praktika Gidroehkstruzii (Theory and Practice of Hydroextrusion) (Kiev: Naukova Dumka: 2007) (in Russian).
  12. N. T. Gudtsov and I. G. Lozinskiy, Zhurnal Tekhnicheskoy Fiziki, 22, No. 8: 1249 (1952) (in Russian).
  13. S. Murali, T. N. Guru Row, D. H. Sastry, K. S. Raman, and K. S. S. Murthy, Scr. Metall. Mater., 31: 267 (1994). Crossref
  14. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Amsterdam: Elsevier LTD: 2007).
  15. L. I. Adyeyeva and A. L. Borysova, Fizyka i Khimiya Tverdoho Tila, 3, No. 3: 454 (2002) (in Ukrainian).