Loading [MathJax]/jax/output/HTML-CSS/jax.js

Formation of Chemically Ordered L10(FePt) Phase in a Nanosize Film Composition of Fe50Pt50 (15 nm)/Au(30 nm)/Fe50Pt50 (15 nm) at Annealing in Vacuum

Yu. M. Makogon, O. P. Pavlova, S. I. Sidorenko, T. I. Verbyts’ka, M. Yu. Verbyts’ka, O. V. Figurna

National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine

Received: 25.02.2014. Download: PDF

Effect of addition of intermediate Au layer with thickness of 30 nm in nanoscale film composition (NFC) Fe50Pt50 (15 nm)/Au (30 nm)/Fe50Pt50 (15 nm) on SiO2 (100 nm)/Si(001) substrates on the diffusion-controlled phase-formation processes–transformation of chemically-disordered soft magnetic А1(FePt) phase into chemically-ordered hard magnetic L10(FePt) phase under annealing in a vacuum at temperature of 600°C during various time intervals is investigated by the methods of physical materials science: X-ray phase analysis and magnetic-properties’ measuring on SQUID (superconducting quantum interference device). As revealed, the А1(FePt) → L10(FePt) phase transformation in Fe50Pt50 (15 nm)/Au (30 nm)/Fe50Pt50 (15 nm) NFC begins at temperature of 600°C for annealing duration of 30 s, which is lower by 100°C in comparison with Fe50Pt50 alloy film. During thermal treatment, Au atoms diffuse along grain boundaries of L10(FePt) phase restricting their growth and magnetic interaction. This is accompanied by increasing of coercive force, but isotropy of magnetic properties is saved independently on magnetic-field direction.

Key words: magnetic properties, chemically ordered L10(FePt) phase, intermediate Au layer, annealing.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i11/1513.html

DOI: https://doi.org/10.15407/mfint.36.11.1513

PACS: 66.30.Pa, 68.55.-a, 75.50.Ss, 75.50.Vv, 75.70.Cn, 81.40.Ef, 81.40.Rs

Citation: Yu. M. Makogon, O. P. Pavlova, S. I. Sidorenko, T. I. Verbyts’ka, M. Yu. Verbyts’ka, and O. V. Figurna, Formation of Chemically Ordered L10(FePt) Phase in a Nanosize Film Composition of Fe50Pt50 (15 nm)/Au(30 nm)/Fe50Pt50 (15 nm) at Annealing in Vacuum, Metallofiz. Noveishie Tekhnol., 36, No. 11: 1513—1522 (2014) (in Ukrainian)


REFERENCES
  1. M. H. Kryder, Computerworld. Storage Networking World (April 3–6, 2006, San Diego) (San Diego, California: Manchester Grand Hyatt: 2006), p. 350.
  2. O. A. Ovanov, L. V. Solina, V. A. Demshina et al., Phys. Met. Metallogr., 35: 81 (1973).
  3. B. Wang, K. Barmak, and T. J. Klemmer, IEEE Trans. Magn., 46, No. 6: 1773 (2010). Crossref
  4. C. Feng, Q. Zhan, B. Li et al., Appl. Phys. Lett., 93: 152513 (2008) Crossref
  5. K. Barmak, J. Kim, L. H. Lewis et al., J. Appl. Phys., 98: 033904 (2005) Crossref
  6. P. Rasmussen, X. Rui, and J. E. Shield, Appl. Phys. Lett., 86: 191915 (2005). Crossref
  7. Yu. M. Makogon, O. P. Pavlova, T. I. Verbytska, and I. A. Vladymyrskyy, Naukovi Visti, No. 6: (2011) (in Ukrainian).
  8. K. Barmak, J. Kim, L. H. Lewis et al., J. Appl. Phys., 98: 033904 (2005). Crossref
  9. A. C. Sun, F. T. Yuan, and J.-H. Hsu, J. Physics: Conference Series, 200: 1020099 (2010). Crossref
  10. A. S. Kamzin, E. V. Snetkova, Z. Yang, F. Vey, and V. Khiang, Pis'ma v ZhTF, 34, Iss. 1: 57 (2008) (in Russian).
  11. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, Rentgenostrukturnyy i Elektronnoopticheskiy Analiz (Moscow: Metallurgiya: 1970) (in Russian).
  12. O. P. Pavlova, T. I. Verbitska, I. A. Vladymyrskyi, S. I. Sidorenko, G. L. Katona, D. L.Beke, G. Beddies, M. Albrecht, and I. M. Makogon, Appl. Surf. Sci., 266: 100 (2013). Crossref
  13. R. V. Chepulskii and S. Curtarolo, Appl. Phys. Lett., 97: 221908 (2010). Crossref
  14. C. Feng, Q. Zhan, B. Li et al., Appl. Phys. Lett., 93: 152513 (2008). Crossref
  15. C. Feng, B.-H. Li, Y. Liu et al., Appl. Phys., 103: 023916 (2008). Crossref