Modelling of Conditions of Existence of the Emitter of a Refractory Material During Cathodic Vacuum—Arc Deposition

V. D. Alimov$^{1}$, A. V. Nedolya$^{1}$, I. N. Titov$^{2}$

$^{1}$Zaporizhzhya National University, 66 Zhukovskogo Str., 69600 Zaporizhzhya, Ukraine
$^{2}$R&D Center for Panoramic Acoustic Systems, NAS of Ukraine, 1 Chubanova Str., 69600 Zaporizhia, Ukraine

Received: 22.11.2013; final version - 13.10.2014. Download: PDF

A nonlinear mathematical model of emitter heating during cathodic vacuum—arc deposition of materials, taking into account the temperature dependence of specific heat and thermal conductivity of the cathode material, is presented. By this model, the values of the emission-current density for a variety of refractory materials are calculated. These data are in a good agreement with literature data. The conditions, under which the evaporation of the cathode material will take place, are determined. The relationship between the emission current density and the time of the emitter heating up to the evaporation temperature, which is nonlinear and depends on the thermal characteristics of the cathode material, is determined. The model makes possible to increase the material deposition effectiveness by a preliminary estimation of the physical process and deposition parameters.

Key words: nonlinear heat equation, density of current, emission, emitter, cathode, refractory material.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i11/1523.html

DOI: https://doi.org/10.15407/mfint.36.11.1523

PACS: 02.60.Lj, 65.40.Ba, 66.70.Df, 72.15.Eb, 73.30.+y, 81.15.Jj, 79.70.+q

Citation: V. D. Alimov, A. V. Nedolya, and I. N. Titov, Modelling of Conditions of Existence of the Emitter of a Refractory Material During Cathodic Vacuum—Arc Deposition, Metallofiz. Noveishie Tekhnol., 36, No. 11: 1523—1532 (2014) (in Russian)


REFERENCES
  1. S. F. Dudnik, A. P. Lubchenko, A. K. Oleynik, A. V. Sagalovich, and V. V. Sagalovich, Physical Surface Engineering, 2, Nos. 1–2: 112 (2004) (in Russian).
  2. P. Strzyzewski, M. J. Sadowski, R. Nietubyc, K. Rogacki, T. Paryjczak, and J. Rogowski, Mater. Sci. Poland., 26, No. 1: 213 (2008).
  3. A. A. Andreev, O. V. Sobol', V. F. Gorban', A. L. Vasil'ev, V. A. Stolbovoy, and I. V. Serdyuk, Physical Surface Engineering, 8, No. 3: 203 (2010) (in Russian).
  4. A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition (New York: John Wiley & Sons: 2000).
  5. I. I. Aksenov, A. A. Andreev, V. A. Belous, V. E. Strelnitsky, and V. M. Khoroshykh, Vakuumnaya Duga. Istochniki Plazmy, Osazhdenie Pokrytiy, Poverkhnostnoe Modifitsirovanie (Vacuum Arc. Sources of Plasma, Cover Deposition, Surface Modification) (Kiev: Naukova Dumka: 2012) (in Russian).
  6. E. A. Litvinov, G. A. Mesyats, and D. I. Proskurovsky, Uspekhi Fizicheskikh Nauk, 139, Iss. 2: 265 (1983) (in Russian). Crossref
  7. A. V. Nedolya, E. I. Pivaev, and I. N. Titov, Physical Surface Engineering, 7, No. 4: 330 (2009) (in Russian).
  8. Fizicheskie Velichiny: Spravochnik (Physical Quantities: Handbook) (Eds. I. S. Grigor'ev and E. Z. Meylikhov) (Moscow: Energoatomizdat: 1991) (in Russian).
  9. D. V. Glazanov, L. M. Baskin, and G. N. Fursey, Zhurnal Tekhnicheskoy Fiziki, 59, No. 5: 60 (1989) (in Russian).
  10. W. B. Nottingham, Phys. Rev., 59, No. 11: 907 (1941). Crossref
  11. R. L. Boxman, D. M. Sanders, and P. J. Martin, Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (Noyes: William Andrew Publishing: 1995).
  12. Yu. P. Raizer, Fizika Gazovogo Razryada: Uchebnoe Rukovodstvo (Gas Discharge Physics: Training Manual) (Moscow: Nauka: 1987) (in Russian).